摘要:
Monofilament sutures are disclosed, which are formed of complaint, segmented, polyaxial, absorbable copolyesters. The sutures are capable of retaining at least 50 percent of their initial breaking strength after 6 weeks following placement in animal or human tissues.
摘要:
Absorbable/biodegradable composite yarns contain at least two types of fibrous components having distinctly different absorption and strength retention profiles and are useful in constructing surgical implants, such as sutures and meshes with integrated physicochemical and biological properties, wherein these properties are modulated through varying the individual yarn content and controlling the geometry of these constructs.
摘要:
Self-setting, bioactive, absorbable composites are derived from inorganic phosphate microparticles and a cyanoacrylate matrix of a methoxypropyl cyanoacrylate at a weight to volume ratio of at least 20/80 of microparticles/matrix. The self-setting composites are capable of the controlled release of bone mineralizing ions, antimicrobials, and bone growth promoters. Such composites are useful as bone cements, fillers, and/or substitutes.
摘要:
Silk/absorbable polyester hybrid medical devices for tissue repair and regeneration are formed of degummed, naturally produced, multifilament silk yarn in combination with at least one absorbable polyester in the form of a surface coating, with or without an antimicrobial agent, for producing value-added braided silk sutures and multifilament yarn, as well as silk/absorbable polyester fiber composites, for producing tailored hybrid sutures, meshes, and scaffolds for tissue regeneration.
摘要:
This invention generally covers a ringed-mesh intravaginal device and applicator therefore wherein the ringed-mesh comprises a composite ring comprising a flexible matrix containing one or more bioactive agent or agents and needed excipients or modulators, and the said matrix is reinforced with a fibrous construct to provided needed initial and in-use biomechanical stability. Of special application of the medicated, ringed-mesh is its use for securing contraception relying on biomechanical, pharmacological, and biochemical means.
摘要:
Composite fibrous constructs are made of combinations of inorganic-organic hybrid monofilament or multifilament yarns containing at least 6 weight percent of inorganic micro-/nanoparticles and organic monofilament or multifilament yarn with typical examples of the hybrid yarn matrix made of absorbable or non-absorbable thermoplastic polymers and final constructs being in the form of knitted or woven meshes and braided ligatures intended to perform under specific mechanically, biologically, and/or radiologically related functions.
摘要:
This invention deals with a composite vascular construct, which is formed of a first, blood contacting component and a second, tissue contacting component. Preferably, the present vascular constructs are in the form of a vascular patch or vascular graft with surface-activated, non-absorbable fabric with immobilized biomolecules on the blood contacting surface, and an absorbable, compliant film or microporous sheath on the other surface of the non-absorbable component of the composite graft or patch.
摘要:
Absorbable, multiphasic, crystalline, solid blend compositions having at least two first order thermal transitions, are formed of a segmented l-lactide copolymer as the principal or major component and at least one additional crystalline thermoplastic absorbable polyester having glycolide-based sequences, a fraction of which participated in ester-ester interchange reactions with lactide-based sequences to produce crystalline materials with modulated properties for use in producing orthopedic and tissue-repair devices.
摘要:
A radiation and radiochemically sterilized, multi-component, fiber-reinforced composite, absorbable/disintegratable urinogenital stent, such as an endoureteral stent, with radiomodulated residence time in the biological site of 1 to 10 weeks depending on the high energy radiation dose used for sterilization.
摘要:
An methacrylate bone cement is toughened and rendered radiopaque by reinforcing with electrospun microfibers including a radiopacifier and antimicrobial agents to provide a bone cement for use in repairing bone or other hard tissues.