摘要:
A programmable logic device (PLD) performs a self-test blank check erase verify operation on memory elements of the PLD to verify that they are erased prior to programming. An enhanced reference voltage source is provided to reliably generate a reference source voltage at a predetermined voltage level regardless of variations in the on-chip power supply voltage and temperature variations. The reference voltage source includes a first resistor connected between the on-chip voltage source and an output node, a second resistor connected to the output node, and a reference voltage adjustment circuit connected between the second resistor and ground. The reference voltage adjustment circuit is programmable to selectively connect the output node to ground through one or more resistive elements in response to input signals such that the output node is maintained at the predetermined reference voltage. The first and second resistors form a resistive divider that allows the predetermined reference voltage to track changes in the on-chip voltage source.
摘要:
A novel test procedure is used to determine the optimum programmable charge pump levels for a flash memory array in a CPLD. According to the method of the invention, an automated tester steps through all combinations of charge pump codes and attempts to program the flash memory with each combination of voltage levels. For each combination, the results of the test (pass or fail) are logged and stored into a map or array. The center of a window of passing pump codes is taken as the starting reference point. The next step is to verify the actual voltage level associated with the pump code combination corresponding to the starting reference point. The reference pump code is loaded into the device and the corresponding flash memory cell voltage levels are measured. If the measured voltage level does not fall into the preferred range, the tester automatically adjusts the level towards the preferred range by adjusting the pump codes.
摘要:
An in-system programing/erasing/verifying structure for non-volatile programable logic devices includes a data input pin, a data output pin, an instruction register, a plurality of data registers including an ISP register, wherein said instruction register and said plurality of data registers are coupled in parallel between said data input pin and said data output pin, and a controller for synchronizing said instruction register and said plurality of data registers. The ISP register includes: an address field, a data field, and a status field. An ISP instruction need only be entered once to program/erase the entire device. Specifically, the address/data packets can be shifted back to back into the ISP register without inserting multiple instructions between each packet at the data input pin, thereby dramatically decreasing the time required to program/erase the entire device in comparison to known ISP methods. Furthermore, the invention provides an efficient method for providing the status (i.e. result), of the ISP operations to either the end-user or the supporting software.
摘要:
A programmable logic device (PLD) includes test circuitry compatible with the JTAG standard (IEEE Standard 1149.1). The PLD also includes a programmable JTAG-disable bit that can be selectively programmed to disable the JTAG circuitry, leaving the PLD to operate as a conventional, non-JTAG-compatible PLD. The PLD also includes means for testing the JTAG test circuitry to determine whether the JTAG circuitry is defective, and means for programming the JTAG-disable bit to disable the JTAG circuitry if the testing means determines that the JTAG circuitry is defective.
摘要:
A programmable logic device, such as a field programmable gate array, is partially reconfigured using a read-modify-write scheme that is controlled by a processor. The partial reconfiguration includes (1) loading a base set of configuration data values into a configuration memory array of the programmable logic device, thereby configuring the programmable logic device; (2) reading a first frame of configuration data values from the configuration memory array; (3) modifying a subset of the configuration data values in the first frame of configuration data values, thereby creating a first modified frame of configuration data values; and (4) overwriting the first frame of configuration data values in the configuration memory array with the first modified frame of configuration data values, thereby partially reconfiguring the programmable logic device. The steps of reading, modifying and overwriting are performed under the control of a processor.
摘要:
A negative voltage detector is disclosed wherein a resistor divider circuit is used to translate a negative voltage into a standard CMOS logic low or logic high value. The small area consumed by the negative voltage divider of the present invention allows multiple device placement within a logic device without the consumption of much area on the logic device. Additionally, the multiple devices placed may detect different negative voltage thresholds with a simple tuning of device components.
摘要:
A method of minimizing power use in programmable logic devices (PLD) using programmable connections and scrap logic to create a versatile power management scheme. Individual product terms in a PLD can be powered off, thereby saving power, without incurring the power-up and settling time delays seen in the prior art. Power management is not restricted to any one function block, nor must the entire device be powered down, unless so programmed. All conventional logic functionality present in the PLD is available to the power management elements, allowing, in one embodiment, a standard function block to be programmed to operate as the control function block. This logic functionality includes, but is not limited to, internal feedback, combinatorial functions, and register functions. Because scrap logic resources left over from user programming and small programmable connections are used, minimal additional chip surface area is needed. No specific input/output pins are required; in fact, no external connections are required at all, though one or more may be used as inputs to the control function block logic. In some embodiments, power management can be accomplished using internal, on-chip signals alone. The pin-locking capabilities (compatibility) of conventional PLD designs are not affected and all function blocks remain identical, preserving maximum design flexibility for users.
摘要:
An input/output (I/O) circuit for transmitting output signals on or receiving input signals from an I/O terminal of an integrated circuit device, such as a Programmable Logic Device (PLD). The I/O circuit includes pull-up and pull-down transistors for generating output signals on the I/O terminal in an output mode, and an isolation transistor for limiting the voltage level transmitted to the pull-up transistor from the I/O terminal in an input mode. The isolation transistor is formed with a thicker gate oxide and a longer channel length than that of the pull-up and pull-down transistors, thereby allowing the isolation transistor to withstand voltages greater than Vcc of the PLD without damage. The isolation transistor is controlled using a charge pump provided on the PLD for programming non-volatile memory cells (e.g., EPROM, EEPROM or flash EPROM cells). The isolation transistor is produced during the same process steps used to produce high voltage transistors associated with the non-volatile memory cells.
摘要:
A method of partially reconfiguring an IC having programmable modules that includes the steps of reading a frame of configuration information from the configuration memory array; modifying at least part of the configuration information, thereby creating a modified frame of configuration information; and overwriting the existing frame of configuration information in the configuration memory array with the modified frame, thereby partially reconfiguring the IC.
摘要:
A negative voltage detector including a resistor divider circuit is used to translate a negative voltage into a standard CMOS logic low or logic high value. The small area consumed by the negative voltage divider allows multiple device placement within a logic device without the consumption of much area on the logic device. Additionally, the multiple devices placed may detect different negative voltage thresholds with a simple tuning of device components.