摘要:
A semiconductor storage device includes a memory cell array, a plurality of word lines, a plurality of bit lines, a first gate wiring element 3a, 3b, a second gate wiring element 3c, 3d, a first connector 5a, 5b, and a second connector 5c, 5d. Each memory cell 10 has first and second sets having a driver transistor 11, a load transistor 12, and an access transistor 13. The word lines are arranged in parallel to each other along a first direction. The bit lines are arranged in parallel to each other along a second direction perpendicular to the first direction. The first gate wiring element comprises a gate electrode of the first driver transistor and the first load transistor, and has a rectangular shape having straight line on opposite sides. The second gate wiring element comprises a gate electrode of the access transistor and has a rectangular shape having straight line on opposite sides.
摘要:
A supply instruction signal attains the H-level before data is written into a plurality of memory cells. A P-channel MOS transistor is arranged between a power supply node and an input node. The P-channel MOS transistor is turned off to open the input node according to the supply instruction signal. In this case, a write driver discharges electric charges accumulated on the input node and electric charges accumulated on a bit line pair. However, a through-current does not flow from the power supply node to a ground node so that flow of the through-current to a CMOS inverter circuit forming each memory cell can be prevented. Accordingly, such a static semiconductor memory device can be provided that can prevent the flow of the through-current to the CMOS inverter circuit forming each memory cell when simultaneously writing data into the plurality of memory cells.
摘要:
A control circuit generates burn-in test signals and a signal on the basis of an address for causing transition of a semiconductor memory device to a burn-in test mode to output the signals to a predecoder. The predecoder outputs signals for selecting even-numbered word lines and signals for causing odd-numbered word lines to be in a non-selected state on the basis of the burn-in test signals at H level and further outputs signals for causing even-numbered word lines to be in a non-selected state and signals for selecting odd-numbered word lines on the basis of the burn-in test signals at H level. As a result, stresses can be effectively applied by the burn-in test.
摘要:
A semiconductor integrated circuit according to the present invention comprises a memory array, an input circuit for writing data in the memory array and reading data from the memory array, an output circuit and a package, including 100 pins, storing the memory array, the input circuit and the output circuit. A fourth pin, an eleventh pin, a twentieth pin, a twenty-seventh pin, a fifty-fourth pin, a sixty-first pin, a seventieth pin and a seventy-seventh pin are supplied with the same voltage. The input circuit and the output circuit receive a power supply voltage from different ones of these pins. Thus, a semiconductor integrated circuit resistant against noise and capable of responding to a high operating frequency is provided.
摘要:
To obtain a semiconductor memory device capable of keeping the internal circuit in active state at all times, without increasing the power consumption during normal operation, and not increasing the number of pins. A burn-in clock generating circuit (1) receives an external clock CLK, a mode signal MODE, and an internal clock INTCLK to output a burn-in clock BICLK to a decoder (5). The burn-in clock BICLK becomes a signal equivalent to the internal clock INTCLK when the mode signal MODE is a fixed signal of H or L indicating normal operation, and becomes a fixed signal of H for indicating activation at all times when the mode signal MODE is a clock at half frequency of the external clock CLK.
摘要:
A power on reset circuit includes a transistor connected between a power supply node and a first node, a first capacitor connected between a ground node and a first node, a resistance element connected parallel to the first capacitor, a first CMOS inverter circuit having an input node connected to the first node and an output node connected to the second node, and a second CMOS inverter circuit having an input node connected to the second node and an output node connected to the first node. Preferably, the power on reset circuit further includes a second capacitor connected between the power supply node and the second node. In the power on reset circuit, when the power is turned off, the first capacitor is fully discharged by the resistance element. Therefore, a reset signal for initializing internal circuitry can be surely generated even when the power is again turned on.
摘要:
A delay circuit delays an internal write control signal by a prescribed time to a global write driver. The global write driver is enabled in response to the delayed write control signal received from the delay circuit, to drive a global write data bus in accordance with internal write data from an input buffer. A block write driver is enabled in response to an internal write control signal and a block selection signal, to drive a local write data bus in response to data on the global write data bus. A write gate connects a bit line to the local write data bus in response to a column selection signal. The delay circuit sets the output of the block write driver at a low level for a prescribed period, whereby a precharge potential of the bit line is reduced to reduce the potential amplitude of the bit line in data writing. An SRAM which operates at a high speed with an enlarged write recovery time margin is provided. SRAM also includes various arrangement for improving operating characteristics and reliability.
摘要:
A semiconductor memory comprising a flip-flop circuit, a redundant memory cell row and column, a specific address detecting gate, a transistor, a sense amplifier and a data output buffer. The receipt of a supply potential causes the flip-flop circuit to generate previously stored output status representing the use or the nonuse of the redundant memory cell row and column. Upon detection of a specific address by the specific address detecting gate, the transistor effects a switching operation causing the output status generated by the flip-flop circuit to be output to the outside via the transistor, sense amplifier and data output buffer. This allows the use or the nonuse of the redundant bits to be verified efficiently.
摘要:
A semiconductor memory device has a plurality of memory cells arranged in rows and columns, a plurality of pairs of complementary first and second bit lines arranged corresponding to respective columns and connecting memory cells on a corresponding column, first and second read data lines, and a plurality of pairs of first and second bipolar transistor provided for respective pairs of first and second bit lines. Each first bipolar transistor is coupled to the first read data line and each second bipolar transistor is coupled to the second read data line and a plurality of first switching circuits transfer potentials of the first and second bit lines to respective bases of corresponding first and second bipolar transistors. A reference line transmits a non-selection level voltage and a plurality of second switching circuits, operating complementary to the corresponding first switching circuits, transfer the non-selection level voltage to bases of corresponding first and second bipolar transistors. Generator circuitry generates non-selection level voltage having (i) a potential level lower than or equal to a low level potential of a selected bit line in a data reading operation mode and (ii) a potential level higher than or equal to a high level potential of the selected bit line in an operation mode other than the data reading operation mode.
摘要:
An ECL buffer circuit includes an input portion for receiving an input signal at an ECL level, a current switch portion and an output portion. The input portion includes a bipolar transistor (Q1), a level-shift diode (D1) and a constant current source (CS1). The current switch portion includes a first and a second switch circuits and a constant current source (CS2). Each switch circuit includes a resistor (R1, R2) and a bipolar transistor (Q2, Q3). The output portion includes a first and a second output circuits and a constant current source (CS3). Each output circuit includes an emitter follower transistor (Q4, Q5) and a bipolar transistor (Q6, Q7). The first output circuit receives an input signal from the input portion, and the second output circuit receives a reference voltage (V.sub.BB). A by-pass resistor (R3, R4) is connected between the base and the emitter of an emitter follower transistor (Q4, Q5) of each output circuit. When the output signal changes from a second level to a first level, the output signal thereby rapidly changes to a predetermined voltage by the emitter follower transistor (Q4, Q5) at first, then changes to a first level by way of the by-pass operation of the by-pass resistor (R3, R4).