摘要:
In one embodiment, a semiconductor integrated circuit has memory cells. Each of the memory cells has non-volatile memories and switching elements. The non-volatile memories and switching elements are connected in series between a first power source and a second power source. Output wirings of at least two of the memory cells are connected to each other. Input wirings are connected with control gates of the switching elements included in each of the at least two memory cells. A plurality of the switching elements included in one of the at least two of the memory cells is turned off, when an input signal or an inverted signal is inputted. Further, another plurality of the switching elements included in another one of the at least two of memory cells other than the one of the memory cells is turned on, when the input signal or the inverted signal is inputted.
摘要:
In one embodiment, a semiconductor integrated circuit has memory cells. Each of the memory cells has non-volatile memories and switching elements. The non-volatile memories and switching elements are connected in series between a first power source and a second power source. Output wirings of at least two of the memory cells are connected to each other. Input wirings are connected with control gates of the switching elements included in each of the at least two memory cells. A plurality of the switching elements included in one of the at least two of the memory cells is turned off, when an input signal or an inverted signal is inputted. Further, another plurality of the switching elements included in another one of the at least two of memory cells other than the one of the memory cells is turned on, when the input signal or the inverted signal is inputted.
摘要:
In one embodiment, a method for implementing a circuit design for an integrated circuit includes: (a) obtaining a first wiring to satisfy a given operating frequency; (b) calculating a maximum bypass wiring length based on the given operating frequency and a critical path of the first wiring; (c) obtaining a second wiring by bypassing the first wiring using wires other than wires of the first wiring in a first wiring group, wherein wiring of the integrated circuit is categorized into a plurality of wiring groups, and the first wiring is included in the first wiring group of the categorized wiring groups; and (d) replacing the first wiring with the second wiring, if a difference between the second wiring and the first wiring is not larger than the maximum bypass wiring length, and not replacing the first wiring if said difference is larger than the maximum bypass wiring length.
摘要:
In one embodiment, a method for implementing a circuit design for an integrated circuit includes: (a) obtaining a first wiring to satisfy a given operating frequency; (b) calculating a maximum bypass wiring length based on the given operating frequency and a critical path of the first wiring; (c) obtaining a second wiring by bypassing the first wiring using wires other than wires of the first wiring in a first wiring group, wherein wiring of the integrated circuit is categorized into a plurality of wiring groups, and the first wiring is included in the first wiring group of the categorized wiring groups; and (d) replacing the first wiring with the second wiring, if a difference between the second wiring and the first wiring is not larger than the maximum bypass wiring length, and not replacing the first wiring if said difference is larger than the maximum bypass wiring length.
摘要:
According to one embodiment, a memory includes a first P-channel FET having a gate connected to a second output node, a source applied to a first potential, and a drain connected to the first output node, a second P-channel FET having a gate connected to a first output node, a source applied to the first potential, and a drain connected to the second output node, a first N-channel FET having a control gate connected to a first word line, a source applied to a second potential lower than the first potential, a drain connected to the first output node, and a threshold changed by data in a storage layer, and a second N-channel FET having a control gate connected to a second word line, a source applied to the second potential, a drain connected to the second output node, and a threshold changed by data in a storage layer.
摘要:
According to one embodiment, a memory includes a first P-channel FET having a gate connected to a second output node, a source applied to a first potential, and a drain connected to the first output node, a second P-channel FET having a gate connected to a first output node, a source applied to the first potential, and a drain connected to the second output node, a first N-channel FET having a control gate connected to a first word line, a source applied to a second potential lower than the first potential, a drain connected to the first output node, and a threshold changed by data in a storage layer, and a second N-channel FET having a control gate connected to a second word line, a source applied to the second potential, a drain connected to the second output node, and a threshold changed by data in a storage layer.
摘要:
According to one embodiment, a cache system includes a tag memory includes a volatile memory device, the tag memory includes ways and storing a tag for each line, a data memory includes a nonvolatile memory device including sense amplifiers for reading data, the data memory includes ways and storing data for each line, a comparison circuit configured to compare a tag included in an address supplied from an external with a tag read from the tag memory, and a controller configured to turn off a power of a sense amplifier for a way which is not accessed based on a comparison result of the comparison circuit.
摘要:
According to an embodiment, a cache system includes a volatile cache memory, a nonvolatile cache memory, an address decoder, and an evacuation unit. The nonvolatile cache memory has a capacity equal to the volatile cache memory. The address decoder designates a same line to the volatile cache memory and the nonvolatile cache memory. The evacuation unit stores data which is inputted from the volatile cache memory and outputs the stored data to the volatile cache memory.
摘要:
According to an embodiment, in a cache system, the sequence storage stores sequence data in association with each piece of data to be stored in the volatile cache memory in accordance with the number of pieces of data stored in the nonvolatile cache memory that have been unused for a longer period of time than the data stored in the volatile cache memory or the number of pieces of data stored in the nonvolatile cache memory that have been unused for a shorter period of time than the data stored in the volatile cache memory. The controller causes the first piece of data to be stored in the nonvolatile cache memory in a case where it can be determined that the first piece of data has been unused for a shorter period of time than any piece of the data stored in the nonvolatile cache memory.
摘要:
One embodiment provides a phase-locked loop (PLL), in which a sequencer controls a loop filter such that, when a signal indicating turning-off of a power supply of the PLL is input thereto, or when a signal indicating turning-on of the power supply of the PLL is input thereto, a resistance value of a first resistance change device in the loop filter is a first resistance value, and that, after the PLL is stabilized, the resistance value of the first resistance change device is a second resistance value which is higher than the first resistance value.