Abstract:
The invention provides a DMOS transistor in which a leakage current is decreased and the source-drain breakdown voltage of the transistor in the off state is enhanced when a body layer is formed by oblique ion implantation. After a photoresist layer 18 is formed, using the photoresist layer 18 and a gate electrode 14 as a mask, first ion implantation is performed toward a first corner portion 14C1 on the inside of the gate electrode 14 in a first direction shown by an arrow A′. A first body layer 17A′ is formed by this first ion implantation. The first body layer 17A′ is formed so as to extend from the first corner portion 14C1 to under the gate electrode 14, and the P-type impurity concentration of the body layer 17A′ in the first corner portion 14C1 is higher than that of a conventional transistor.
Abstract:
A coil is formed by coaxially winding a second winding so as to be in intimate contact with an outer circumferential portion of a first winding wound about a winding shaft axis. In the first winding, one side of a winding wire is wound from an inner circumferential side to an outer circumferential side, the other side of the winding wire is drawn forth from the inner circumferential side to the outer circumferential side, while crossing the one side of the winding wire, and a thickness in a direction of the winding shaft axis in crossing portions of the one side of the winding wire and the other side of the winding wire is equal to a thickness in other portions.
Abstract:
The present invention is related to a disc cartridge in which an optical disc, an inner shell and shutter members are housed in a main cartridge body unit, formed by abutting and combining upper and lower shells and in which the inner shell is run in rotation to cause the shutter members to open or close an aperture provided in the main cartridge body unit. The inner shell is formed by a resin molding portion comprised of a first molded portion for forming the inner shell and a second molded portion connected to the first molded portion. The second molded portion is provided at a position forming the aperture in the inner shell and is connected to the first molded portion through a flanged thin-walled section. The inner shell is formed by severing the second molded portion and the flanged thin-walled section.
Abstract:
Disclosed is that in a method of manufacturing a semiconductor device of the present invention, when first and second P type diffusion layers using as a backgate region, these layers are formed in such a way that their impurity concentration peaks are shifted, respectively. Then, in the backgate region, a concentration profile of a region where an N type diffusion layer is formed is gradually established. After that, impurity ions, which form the N type diffusion layer, are implanted, and thereafter a thermal treatment is performed to diffuse the N type diffusion layer in a y shape at a lower portion of a gate electrode. This manufacturing method makes it possible to implement an electric filed relaxation in a drain region.
Abstract:
A magnetic tape cartridge includes a cartridge case, a pair of cylindrical hubs rotatably provided in the cartridge case, and a magnetic tape laid between the hubs and wound around outer peripheries of the hubs. Each of the hubs has an inner diameter portion provided with a height-position determining member. The height-position determining member determines a height position of the hub in the magnetic tape cartridge by contacting a driving shaft inserted in the hub when the magnetic tape cartridge is mounted in a magnetic recording and reproducing apparatus.
Abstract:
There is a problem that a reverse off-leak current becomes too large in a Schottky barrier diode. A semiconductor device of the present invention includes P-type first and second anode diffusion layers formed in an N-type epitaxial layer, N-type cathode diffusion layers formed in the epitaxial layer, a P-type third anode diffusion layer formed in the epitaxial layer so as to surround the first and second anode diffusion layers and to extend toward the cathode diffusion layers, and a Schottky barrier metal layer formed on the first and second anode diffusion layers.
Abstract:
A tape cartridge is configured to include a cartridge case, a hub, around which a magnetic tape is wound around and is housed in the cartridge case rotatably, and a drive apparatus for driving the hub to rotate, the drive apparatus being arranged between a bottom portion of the hub and the cartridge case.
Abstract:
A tape cartridge that has a clamp force to a block body and that secures a leader tape to a leader block is provided.Nail portions (63a, 64a) formed on the outer surface sides of a pair of leg portions (63, 64) of a clamper (36′) are secured to securing grooves (53, 54) formed on side walls of a assembling concave portion (50) of a block body (40) to secure the block body (40) and the clamper (36′). At this point, with concave grooves (73, 74) and a reinforcement rib (75) formed on an inner surface side of a base portion (60) that composes the clamper (36′) in the elongation direction of the leg portions 63 and 64. Thus, when the clamper (36′) is pushed, it can be prevented from being damaged and a desired clamp force can be obtained.
Abstract:
A semiconductor device has a gate electrode formed on a P type semiconductor substrate via gate oxide films. A first low concentration (LN type) drain region is made adjacent to one end of the gate electrode. A second low concentration (SLN type) drain region is formed in the first low concentration drain region so that the second low concentration drain region is very close to the outer boundary of the second low concentration drain region and has at least a higher impurity concentration than the first low concentration drain region. A high concentration (N+ type) source region is formed adjacent to the other end of said gate electrode, and a high concentration (N+ type) drain region is formed in the second low concentration drain region having the designated space from one end of the gate electrode.
Abstract:
A semiconductor device includes a trench formed in a surface of a semiconductor substrate. A conductor is embedded in the trench. A conductive layer is arranged adjacent to the trench on the surface of the semiconductor substrate. Semiconductor elements, which include sources provided by one of the conductor and the conductive layer and drains provided by the other one of the conductor and the conductive layer, are formed in a semiconductor element formation region. A planar wiring layer is embedded in the semiconductor substrate under the entire semiconductor element formation region and connected to the conductor.