摘要:
Provided is a field-effect transistor (FET) having small off-state current, which is used in a miniaturized semiconductor integrated circuit. The field-effect transistor includes a thin oxide semiconductor which is formed substantially perpendicular to an insulating surface and has a thickness of greater than or equal to 1 nm and less than or equal to 30 nm, a gate insulating film formed to cover the oxide semiconductor, and a strip-like gate which is formed to cover the gate insulating film and has a width of greater than or equal to 10 nm and less than or equal to 100 nm. In this structure, three surfaces of the thin oxide semiconductor are covered with the gate, so that electrons injected from a source or a drain can be effectively removed, and most of the space between the source and the drain can be a depletion region; thus, off-state current can be reduced.
摘要:
Provided is a field-effect transistor (FET) having small off-state current, which is used in a miniaturized semiconductor integrated circuit. The field-effect transistor includes a thin oxide semiconductor which is formed substantially perpendicular to an insulating surface and has a thickness of greater than or equal to 1 nm and less than or equal to 30 nm, a gate insulating film formed to cover the oxide semiconductor, and a strip-like gate which is formed to cover the gate insulating film and has a width of greater than or equal to 10 nm and less than or equal to 100 nm. In this structure, three surfaces of the thin oxide semiconductor are covered with the gate, so that electrons injected from a source or a drain can be effectively removed, and most of the space between the source and the drain can be a depletion region; thus, off-state current can be reduced.
摘要:
A semiconductor device such as a transistor with an excellent OFF characteristic even when a channel is short is provided. A periphery of a source is surrounded by an extension region and a halo region, a periphery of a drain is surrounded by an extension region and a halo region, and a substrate with low impurity concentration is not in contact with the source or the drain. Moreover, a high-work-function electrode is provided via a gate insulator, and electrons entering the vicinity of a surface of the substrate from the extension regions are eliminated. With such a structure, the impurity concentration of the channel region can be decreased even when the channel is short, and a favorable transistor characteristic can be obtained.
摘要:
A semiconductor device such as a transistor with an excellent OFF characteristic even when a channel is short is provided. A periphery of a source is surrounded by an extension region and a halo region, a periphery of a drain is surrounded by an extension region and a halo region, and a substrate with low impurity concentration is not in contact with the source or the drain. Moreover, a high-work-function electrode is provided via a gate insulator, and electrons entering the vicinity of a surface of the substrate from the extension regions are eliminated. With such a structure, the impurity concentration of the channel region can be decreased even when the channel is short, and a favorable transistor characteristic can be obtained.
摘要:
A thin film transistor is provided, which includes a gate insulating layer covering a gate electrode, a microcrystalline semiconductor layer provided over the gate insulating layer, an amorphous semiconductor layer overlapping the microcrystalline semiconductor layer and the gate insulating layer, and a pair of impurity semiconductor layers which are provided over the amorphous semiconductor layer and to which an impurity element imparting one conductivity type is added to form a source region and a drain region. The gate insulating layer has a step adjacent to a portion in contact with an end portion of the microcrystalline semiconductor layer. A second thickness of the gate insulating layer in a portion outside the microcrystalline semiconductor layer is smaller than a first thickness thereof in a portion in contact with the microcrystalline semiconductor layer.
摘要:
An object is to provide a semiconductor device including an oxide semiconductor, which maintains favorable characteristics and achieves miniaturization. The semiconductor device includes an oxide semiconductor layer, a source electrode and a drain electrode in contact with the oxide semiconductor layer, a gate electrode overlapping with the oxide semiconductor layer, and a gate insulating layer provided between the oxide semiconductor layer and the gate electrode, in which the source electrode and the drain electrode each include a first conductive layer, and a second conductive layer having a region which extends in a channel length direction from an end portion of the first conductive layer.
摘要:
A thin film transistor includes a gate electrode, a gate insulating layer covering the gate electrode, a microcrystalline semiconductor layer over the gate insulating layer, an amorphous semiconductor layer over the microcrystalline semiconductor layer, source and drain regions over the amorphous semiconductor layer, source and drain electrodes in contact with and over the source and drain regions, and a part of the amorphous semiconductor layer overlapping with the source and drain regions is thicker than a part of the amorphous semiconductor layer overlapping with a channel formation region. The side face of the source and drain regions and the side face of the amorphous semiconductor form a tapered shape together with an outmost surface of the amorphous semiconductor layer. The taper angle of the tapered shape is such an angle that decrease electric field concentration around a junction portion between the source and drain regions and the amorphous semiconductor layer.
摘要:
A semiconductor device including a first transistor and a second transistor and a capacitor which are over the first transistor is provided. A semiconductor layer of the second transistor includes an offset region. In the second transistor provided with an offset region, the off-state current of the second transistor can be reduced. Thus, a semiconductor device which can hold data for a long time can be provided.
摘要:
In a transistor including an oxide semiconductor film, a metal oxide film which has a function of preventing electrification and covers a source electrode and a drain electrode is formed in contact with the oxide semiconductor film, and then, heat treatment is performed. Through the heat treatment, impurities such as hydrogen, moisture, a hydroxyl group, or hydride are intentionally removed from the oxide semiconductor film, whereby the oxide semiconductor film is highly purified. By providing the metal oxide film, generation of a parasitic channel on the back channel side of the oxide semiconductor film in the transistor can be prevented.
摘要:
An intrinsic or substantially intrinsic semiconductor, which has been subjected to a step of dehydration or dehydrogenation and a step of adding oxygen so that the carrier concentration is less than 1×1012/cm3 is used for an oxide semiconductor layer of an insulated gate transistor, in which a channel region is formed. The length of the channel formed in the oxide semiconductor layer is set to 0.2 μm to 3.0 μm an inclusive and the thicknesses of the oxide semiconductor layer and the gate insulating layer are set to 15 nm to 30 nm inclusive and 20 nm to 50 nm inclusive, respectively, or 15 nm to 100 nm inclusive and 10 nm to 20 nm inclusive, respectively. Consequently, a short-channel effect can be suppressed, and the amount of change in threshold voltage can be less than 0.5 V in the range of the above channel lengths.
摘要翻译:对于绝缘栅极晶体管的氧化物半导体层,使用已进行脱水或脱氢工序的本征或本质上本征的半导体,以及添加氧以使载流子浓度小于1×10 12 / cm 3的步骤, 其中形成沟道区。 将形成在氧化物半导体层中的沟道的长度设定为0.2μm〜3.0μm,氧化物半导体层和栅极绝缘层的厚度为15nm〜30nm,包括20nm〜50nm ,或分别为15nm〜100nm,10nm〜20nm。 因此,可以抑制短沟道效应,并且在上述通道长度的范围内阈值电压的变化量可以小于0.5V。