摘要:
An adsorbent state determining apparatus is provided for accurately determining the state of an adsorbent including a deterioration as well as for allowing for recovery of the adsorbent if its adsorbent performance can be restored. The adsorbent state determining apparatus determines the state of an adsorbent for adsorbing hydrocarbons contained in exhaust gases. An upstream and a downstream temperature sensor are provided at upstream and downstream locations of the adsorbent in an exhaust system for detecting temperatures of exhaust gases upstream and downstream of the adsorbent. An engine water temperature sensor detects an operating state of the engine. An ECU estimates the temperature of the exhaust gas which should be detected downstream of the adsorbent during adsorption of the adsorbent based on the upstream temperature detected by the upstream temperature sensor and an engine water temperature of the engine detected by the engine water temperature sensor. The ECU then compares the estimated downstream temperature with the detected downstream temperature detected by the downstream temperature sensor during adsorption of the adsorbent to determine the adsorption state of the adsorbent.
摘要:
A control system for an internal combustion engine having a catalyst arranged in the exhaust system is disclosed. In the control system, catalyst temperature rise accelerating control is executed by increasing the intake air amount immediately after starting of the engine and retarding the ignition timing to make the rotational speed of the engine coincide with a target rotational speed. The air-fuel ratio of an air-fuel mixture supplied to the engine is controlled to a lean region with respect to the stoichiometric ratio immediately after starting of the engine. The degree of making the air-fuel ratio leaner is suppressed when the retard amount of the ignition timing during the execution of the catalyst temperature rise accelerating control is less than a predetermined retard amount.
摘要:
A first exhaust gas sensor 5 (air-fuel ratio sensor) and a second exhaust gas sensor 6 (O2 sensor) are disposed respectively upstream and downstream of a catalytic converter. An exhaust system E which ranges from the exhaust gas sensor 5 to the exhaust gas sensor 6 and includes the catalytic converter 3 is regarded as an object exhaust system E, and a behavior of the object exhaust system E is modeled. When an internal combustion engine 1 is in operation, parameters to be set of the model of the object exhaust system E are sequentially identified based on the data of outputs of the exhaust gas sensors 5, 6. A deteriorated state of the catalytic converter 3 is determined based on the data of the identified values. Concurrent with the determination of the deteriorated state, a target air-fuel ratio for the internal combustion engine 1 is sequentially determined in order to converge the output of the exhaust gas sensor 5 to a given target value, and the air-fuel ratio of the internal combustion engine 1 is controlled to converge the output (the detected value of the air-fuel ratio) of the first exhaust gas sensor 5 to the target air-fuel ratio, for thereby allowing the catalytic converter 3 to achieve an optimum purifying capability. In this manner, the deteriorated state of the catalytic converter 3 can be determined in various operation states of the internal combustion engine 1 while keeping the purifying capability of the catalytic converter 3.
摘要:
The values of parameters of a model of an object exhaust system including a catalytic converter are identified from the data of outputs from an air-fuel ratio sensor and an O2 sensor which are disposed respectively upstream and downstream of the catalytic converter while an internal combustion engine associated with the catalytic converter is in operation. A deterioration evaluating parameter representing the degree of variation of time-series data of the identified parameters is determined from the time-series data of the identified parameters. The deteriorated state of the catalytic converter is evaluated based on the deterioration evaluating parameter.
摘要:
An allowable range (adaptive allowable range) for limiting a manipulated variable generated in order to converge the difference between an output from an O2 sensor disposed downstream of a catalytic converter and a target value thereof to “0” is sequentially updated depending on how the manipulated variable deviates from the allowable range.
摘要:
A plant control system has a reference value setting unit for variably setting a reference value for an air-fuel ratio to be given to an exhaust system including a catalytic converter, depending on a component based on an adaptive control law of a manipulated variable of the air-fuel ratio generated by a controller according to an adaptive sliding mode control process in order to converge an output of an O2 sensor disposed downstream of the catalytic converter to a target value. The manipulated variable generated by the controller represents the difference between the air-fuel ratio and the reference value, required to converge the output of the O2 sensor to the target value.
摘要:
A state determining apparatus for an exhaust gas recirculation system is provided for appropriately determining the state of an exhaust gas recirculation system including an EGR passage. An exhaust gas recirculation system is arranged in an exhaust system of an internal combustion engine including an EGR passage for recirculating a portion of exhaust gases to an intake system in accordance with an operating state of the internal combustion engine. The state determining apparatus comprises a humidity sensor arranged in the EGR passage for detecting a humidity within the EGR passage, and an ECU for determining the state of the exhaust gas recirculation system based on a result detected by the humidity sensor.
摘要:
A failure determination device that detects the humidity of exhaust gases from an internal combustion engine and a control system for an exhaust passage changeover valve, which can switch the changeover valve with appropriate timing, thereby enabling sufficient purification of exhaust gases. An operating condition of the engine is detected. Based on the detected operating condition of the engine, it is determined whether the engine is in an operating condition in which failure determination of the humidity sensor can be executed. It is determined whether the humidity sensor has failed, based on a result of detection by the humidity sensor, when it has been judged that the failure determination of the humidity sensor can be executed.
摘要:
An object system for generating an output signal of an O2 sensor from a target air-fuel ratio is expressed as a model including a response delay element and a dead time element. Data of identified values of parameters of the model are sequentially generated by an identifier. Data of an estimated value of the output signal of the O2 sensor after a dead time of the object system is sequentially generated by an estimator. The target air-fuel ratio is generated according to an adaptive sliding mode control process performed by a sliding mode controller using the data of the identified and estimated values. The air-fuel ratio of an internal combustion engine is manipulated on the basis of the target air-fuel ratio according to a feed-forward control process.
摘要:
A control system for an internal combustion engine having an exhaust system, an intake system, and an exhaust gas recirculation mechanism for recirculating exhaust gases from the exhaust system to the intake system is disclosed. The exhaust system is provided with an adsorbent for adsorbing hydrocarbon. When the adsorbent has adsorbed the hydrocarbon and the engine is operating in an idling condition, an intake air amount of the engine is increased and an ignition timing of said engine is retarded, and at the same time, the exhaust gas recirculation is performed to recirculate the hydrocarbon desorbed from the adsorbent to the intake system.