摘要:
Asymmetry metrology is performed using at least a portion of Mueller matrix elements, including, e.g., the off-diagonal elements of the Mueller matrix. The Mueller matrix may be generated using, e.g., a spectroscopic or angle resolved ellipsometer that may include a rotating compensator. The Mueller matrix is analyzed by fitting at least a portion of the elements to Mueller matrix elements calculated using a rigorous electromagnetic model of the sample or by fitting the off-diagonal elements to a calibrated linear response. The use of the Mueller matrix elements in the asymmetry measurement permits, e.g., overlay analysis using in-chip devices thereby avoiding the need for special off-chip targets.
摘要:
Asymmetry metrology is performed using at least a portion of Mueller matrix elements, including, e.g., the off-diagonal elements of the Mueller matrix. The Mueller matrix may be generated using, e.g., a spectroscopic or angle resolved ellipsometer that may include a rotating compensator. The Mueller matrix is analyzed by fitting at least a portion of the elements to Mueller matrix elements calculated using a rigorous electromagnetic model of the sample or by fitting the off-diagonal elements to a calibrated linear response. The use of the Mueller matrix elements in the asymmetry measurement permits, e.g., overlay analysis using in-chip devices thereby avoiding the need for special off-chip targets.
摘要:
A hydraulic oil cylinder has a cushion collar, which is sleeved in the cushion position of a piston rod and can axially slide along the piston rod. In the oil cylinder cavity between an oil hole of the rod cavity and the terminal position of the piston end surface of the rod cavity during the piston extending movement, a sealing end surface of the rod cavity is provided, which can block the cushion collar and contact with the first end surface of the cushion collar to form a sealing surface. At least a throttle oil channel is provided between the cushion collar and the piston rod.
摘要:
A hydraulic oil cylinder has a buffer sleeve (4), a rodless cavity sealing end face (1-2) and at least one throttle oil channel (3-1). The buffer sleeve (4) is sleeved on an additional section (3a) of a piston rod in the rodless cavity (2-2) and axially slidable along the additional section (3a) of the piston rod. The rodless cavity sealing end face (1-2) is provided in an oil cylinder cavity between a rodless cavity oil passing hole (1-1) and the termination of the rodless cavity end face of the piston for the retraction process of the piston rod (3), and enables to block the buffer sleeve (4) and attach to the first end surface (4-1) of the buffer sleeve thereby forming a sealing surface.
摘要:
A biomolecular assay includes a substrate with a metallic layer on at least one surface thereof. The metallic film includes nanocavities. The nanocavities are configured to enhance signals that are representative of the presence or amount of one or more analytes in a sample or sample solution, and may be configured to enhance the signal by a factor of about two or more or by a factor of about three or more. Such signal enhancement may be achieved with nanocavities that are organized in an array, randomly positioned nanocavities, or nanocavities that are surrounded by increased surface area features, such as corrugation or patterning, or nanocavities that have quadrilateral or triangular shapes with tailored edge lengths, or with a plurality of nanoparticles. Methods for fabricating biomolecular substrates and assay techniques in which such biomolecular substrates are used are also disclosed.
摘要:
The present application discloses a hydraulic oil cylinder, of which a piston rod (3) is provided with at least two cushion collars (4, 11) which are axially slidable along the piston rod (3). Axial throttle oil channels (301a, 301b) are provided between the cushion collars (4, 11) and a piston (6). A first cushion collar (4) is provided with a sealing end face (401), and an end cover of a rod cavity (1) is provided with a sealing end face (101). The sealing end face (401) of the first cushion collar contacts with the sealing end face (101) of the end cover of the rod cavity to form a seal. Hydraulic oil within the rod cavity is discharged through one axial throttle oil channel (301a) to an oil passage B.
摘要:
A hydraulic oil cylinder has a buffer sleeve (4), a rodless cavity sealing end face (1-2) and at least one throttle oil channel (3-1). The buffer sleeve (4) is sleeved on an additional section (3a) of a piston rod in the rodless cavity (2-2) and axially slidable along the additional section (3a) of the piston rod. The rodless cavity sealing end face (1-2) is provided in an oil cylinder cavity between a rodless cavity oil passing hole (1-1) and the termination of the rodless cavity end face of the piston for the retraction process of the piston rod (3), and enables to block the buffer sleeve (4) and attach to the first end surface (4-1) of the buffer sleeve thereby forming a sealing surface.
摘要:
A biomolecular assay includes a substrate with a metallic layer on at least one surface thereof. The metallic film includes nanocavities. The nanocavities are configured to enhance signals that are representative of the presence or amount of one or more analytes in a sample or sample solution, and may be configured to enhance the signal by a factor of about two or more or by a factor of about three or more. Such signal enhancement may be achieved with nanocavities that are organized in an array, randomly positioned nanocavities, or nanocavities that are surrounded by increased surface area features, such as corrugation or patterning, or nanocavities that have quadrilateral or triangular shapes with tailored edge lengths, or with a plurality of nanoparticles. Methods for fabricating biomolecular substrates and assay techniques in which such biomolecular substrates are used are also disclosed.
摘要:
The present application discloses a hydraulic oil cylinder, of which a piston rod (3) is provided with at least two cushion collars (4, 11) which are axially slidable along the piston rod (3). Axial throttle oil channels (301a, 301b) are provided between the cushion collars (4, 11) and a piston (6). A first cushion collar (4) is provided with a sealing end face (401), and an end cover of a rod cavity (1) is provided with a sealing end face (101). The sealing end face (401) of the first cushion collar contacts with the sealing end face (101) of the end cover of the rod cavity to form a seal. Hydraulic oil within the rod cavity is discharged through one axial throttle oil channel (301a) to an oil passage B. A second cushion collar (11) is provided with a sealing end face (111), and an end cover of a rodless cavity (12) is provided with a sealing end face (121). The sealing end face (111) of the second cushion collar contacts with the sealing end face (121) of the end cover of the rodless cavity to form a seal. Hydraulic oil within the rodless cavity is discharged through another axial throttle oil channel (301b) to another oil passage A. The hydraulic oil cylinder can operate reliably and achieve a buffer function in a large load, high frequency operating condition, and thus has a longer operating life. And also, precision requirements for manufacturing the hydraulic oil cylinder are low, thereby facilitating production of the hydraulic oil cylinder. The present application also discloses a hydraulic cushion system, an excavator and a concrete pump truck which use the above hydraulic oil cylinder.
摘要:
A metrology system performs optical metrology while holding a sample with an unknown focus offset. The measurements are corrected by fitting for the focus offset in a model regression analysis. Focus calibration is used to determine the optical response of the metrology device to the focus offset. The modeled data is adjusted based on the optical response to the focus offset and the model regression analysis fits for the focus offset as a variable parameter along with the sample characteristics that are to be measured. Once an adequate fit is determined, the values of the sample characteristics to be measured are reported. The adjusted modeled data may be stored in a library, or alternatively, modeled data may be adjusted in real-time.