Abstract:
A backside illuminated imaging sensor includes a semiconductor having an imaging pixel that includes a photodiode region, an insulator, and a silicide reflective layer. The photodiode region is formed in the frontside of the semiconductor substrate. The insulation layer is formed on the backside of the semiconductor substrate. The transparent electrode formed on the backside of the insulation layer. The transparent electrode allows light to be transmitted through a back surface of the semiconductor substrate such that when the transparent electrode is biased, carriers are formed in a region in the backside of the semiconductor substrate to reduce leakage current. ARC layers can be used to increase sensitivity of the sensor to selected wavelengths of light.
Abstract:
A backside illuminated imaging sensor includes a semiconductor having an imaging pixel that includes a photodiode region, an insulator, and a silicide reflective layer. The photodiode region is formed in the frontside of the semiconductor substrate. The insulation layer is formed on the backside of the semiconductor substrate. The transparent electrode formed on the backside of the insulation layer. The transparent electrode allows light to be transmitted through a back surface of the semiconductor substrate such that when the transparent electrode is biased, carriers are formed in a region in the backside of the semiconductor substrate to reduce leakage current. ARC layers can be used to increase sensitivity of the sensor to selected wavelengths of light.
Abstract:
Circuitry to reduce signal noise characteristics in an image sensor. In an embodiment, a bit trace line segment is located between neighboring respective segments of a source follower power trace and an additional trace which is to remain at a first voltage level during a pixel cell readout time period. In another embodiment, for each such trace segment, a smallest separation between the trace segment and the respective neighboring other one of such trace segments is substantially equal to or less than some maximum length to provide for parasitic capacitance between the bit line trace and one or more other traces.
Abstract:
Techniques and mechanisms for improving full well capacity for pixel structures in an image sensor. In an embodiment, a first pixel structure of the image sensor includes an implant region, where a skew of the implant region corresponds to an implant angle, and a second pixel structure of the image sensor includes a transfer gate. In another embodiment, an offset of the implant region of the first pixel structure from the transfer gate of the second pixel structure corresponds to the implant angle.
Abstract:
An image sensor pixel includes a photosensitive region and pixel circuitry. The photosensitive region accumulates an image charge in response to light incident upon the image sensor. The pixel circuitry includes a transfer-storage transistor, a charge-storage area, an output transistor, and a floating diffusion region. The transfer-storage transistor is coupled between the photosensitive region and the charge-storage area. The output transistor has a channel coupled between the charge-storage area and the floating diffusion region and has a gate tied to a fixed voltage potential. The transfer-storage transistor causes the image charge to transfer from the photosensitive region to the charge-storage area and to transfer from the charge-storage area to the floating diffusion region.
Abstract:
Techniques and mechanisms to improve potential well characteristics in a pixel cell. In an embodiment, a coupling portion of a pixel cell couples a reset transistor of the pixel cell to a floating diffusion node of the pixel cell, the reset transistor to reset a voltage of the floating diffusion node. In another embodiment, the pixel cell includes a shield line which extends athwart the coupling portion, where the shield line is to reduce a parasitic capacitance of the reset transistor to the floating diffusion node.
Abstract:
Techniques and mechanisms to improve potential well characteristics in a pixel cell. In an embodiment, a coupling portion of a pixel cell couples a reset transistor of the pixel cell to a floating diffusion node of the pixel cell, the reset transistor to reset a voltage of the floating diffusion node. In another embodiment, the pixel cell includes a shield line which extends athwart the coupling portion, where the shield line is to reduce a parasitic capacitance of the reset transistor to the floating diffusion node.
Abstract:
What is disclosed is an apparatus comprising a transfer gate formed on a substrate and a photodiode formed in the substrate next to the transfer gate. The photodiode comprises a shallow N-type collector formed in the substrate, a deep N-type collector formed in the substrate, wherein a lateral side of the deep N-type collector extends at least under the transfer gate, and a connecting N-type collector formed in the substrate between the deep N-type collector and the shallow N-type collector, wherein the connecting implant connects the deep N-type collector and the shallow N-type collector. Also disclosed is a process comprising forming a deep N-type collector in the substrate, forming a shallow N-type collector formed in the substrate, and forming a connecting N-type collector in the substrate between the deep N-type collector and the shallow N-type collector, wherein the connecting implant connects the deep N-type collector and the shallow N-type collector. A transfer gate is formed on the substrate next to the deep photodiode, wherein a lateral side of the deep N-type collector extends at least under the transfer gate. Other embodiments are disclosed and claimed.
Abstract:
An apparatus for measuring the power frequency of a light source includes a photo-sensitive transistor, a modulators and a logic unit. The photo-sensitive transistor generates an electrical signal that is responsive to light incident thereon from the light source. The modulator generates a modulated signal based on the electrical signal that toggles at a rate substantially proportional to the power frequency of the light source. The logic unit is coupled to receive the modulated signal and determine its toggling frequency.
Abstract:
The present disclosure introduces a simple method for reducing the capacitance of the floating diffusion node of a CMOS image sensor and consequently improving the image sensor's sensitivity. While reducing parasitic capacitances such as the capacitance between the transfer gate and the floating node, the proposed device layouts, in which the channel width of the detection section is different from the channel width of the photoelectric conversion element, demand no more than what is required for the fabrication of the traditional layouts.