LIGHT EMITTING ELEMENT
    2.
    发明申请

    公开(公告)号:US20180366906A1

    公开(公告)日:2018-12-20

    申请号:US15739853

    申请日:2016-05-11

    申请人: Sony Corporation

    摘要: A light emitting element includes a stacked structure 20 in which a first compound semiconductor layer 21, an active layer 23 and a second compound semiconductor layer 22 made of GaN-based compound semiconductors are stacked, a mode loss acting portion 54 provided on the second compound semiconductor layer 22 and configuring a mode loss acting region 55 that acts upon increase or decrease of oscillation mode loss, a second electrode 32, a second light reflection layer 42, a first light reflection layer 41, and a first electrode 31. A current injection region 51, a current non-injection inner side region 52 that surrounds the current injection region 51 and a current non-injection outer side region 53 that surrounds the current non-injection inner side region 52 are formed on the stacked structure 20, and a projection image of the mode loss acting region 55 and a projection image of the current non-injection outer side region 53 overlap with each other.

    Light emitting element
    3.
    发明授权

    公开(公告)号:US10199800B2

    公开(公告)日:2019-02-05

    申请号:US15739853

    申请日:2016-05-11

    申请人: Sony Corporation

    摘要: A light emitting element includes a stacked structure 20 in which a first compound semiconductor layer 21, an active layer 23 and a second compound semiconductor layer 22 made of GaN-based compound semiconductors are stacked, a mode loss acting portion 54 provided on the second compound semiconductor layer 22 and configuring a mode loss acting region 55 that acts upon increase or decrease of oscillation mode loss, a second electrode 32, a second light reflection layer 42, a first light reflection layer 41, and a first electrode 31. A current injection region 51, a current non-injection inner side region 52 that surrounds the current injection region 51 and a current non-injection outer side region 53 that surrounds the current non-injection inner side region 52 are formed on the stacked structure 20, and a projection image of the mode loss acting region 55 and a projection image of the current non-injection outer side region 53 overlap with each other.