摘要:
A three-dimensional periodic structure, a method of producing the same, a high frequency element, and a high frequency apparatus that can be applied to a signal transmission path or a functional element in, for example, a compact functional element in a frequency range lower than optical frequencies, such as the microwave range are provided. The three-dimensional periodic structure includes a three-dimensional periodic structure component which includes two substances having different dielectric constants periodically distributed in three-dimensional axial directions, a dielectric layer having a predetermined thickness provided at the periphery thereof, and a conductor provided on external surfaces of the dielectric layer. A third material which is different from the two substances and having predetermined dimensions embedded into the three-dimensional periodic structure component can be provided. A transmission path integrally equipped with a conductor is constructed, which is used as a pipe of a waveguide.
摘要:
There is provided a three dimensional periodic structure comprising two substances having different dielectric constants with a high contrast between the dielectric constants or refractive indexes, periodically distributed in a three dimensional space. A unit cell substrate having air holes in a diamond structure is formed by a stereo lithography method which repeats the step of irradiating light onto a liquid surface of a light-hardening resin such as a photosensitive epoxy resin in each layer in a cross-sectional pattern to be formed. Then, a conductive film made of, for example, Cu is formed by an electroless plating method on the surface of the unit cell substrate. Thus, a three dimensional periodic structure comprising two substances having different dielectric constants, i.e., resin and air, periodically distributed in a three dimensional space, and comprising a conductive film formed at an interface between the two substances is obtained.
摘要:
Photonic crystal units (10a, 10b, and 10c) are formed by an optical molding process using a photocurable resin, and partitions (11) are provided at the boundaries therebetween. The voids in each photonic crystal unit are filled with a second substance containing ceramic particles dispersed therein to form a filled portion 2. A plurality of three-dimensional periodic structure units containing the first and second substances distributed with three-dimensional periodicity are arranged so as to have different ratios between the dielectric constants of the first and second substances. Therefore, present invention provides a three-dimensional periodic structure having a wide photonic band gap which could not be obtained in a conventional three-dimensional periodic structure.
摘要:
A three-dimensional fractal-structure body partially or entirely comprises a three-dimensional fractal structure, the fractal structure body having a local minimum value at a particular wavelength determined by structural and material factors of the fractal structure in a transmissivity for electromagnetic waves and/or a local minimum value at a particular wavelength determined by structural and material factors of the fractal structure in the reflectivity for electromagnetic waves.
摘要:
A three-dimensional fractal structure body that had not been realized by the prior art and newly developed technologies is provided. The fractal structure body partially or entirely comprises a three-dimensional fractal structure, the fractal structure body having a local minimum value at a particular wavelength determined by structural and material factors of the fractal structure in a transmissivity for electromagnetic wave and/or a local minimum value at a particular wavelength determined by structural and material factors of the fractal structure in the reflectivity for electromagnetic wave.
摘要:
Photonic crystal units (10a, 10b, and 10c) are formed by an optical molding process using a photocurable resin, and partitions (11) are provided at the boundaries therebetween. The voids in each photonic crystal unit are filled with a second substance containing ceramic particles dispersed therein to form a filled portion 2. A plurality of three-dimensional periodic structure units containing the first and second substances distributed with three-dimensional periodicity are arranged so as to have different ratios between the dielectric constants of the first and second substances. Therefore, present invention provides a three-dimensional periodic structure having a wide photonic band gap which could not be obtained in a conventional three-dimensional periodic structure.
摘要:
Achieved is a ceramic carbon composite material and a ceramic-coated ceramic carbon composite material which are lighter than ceramics and excellent in at least one of properties including oxidation resistance, resistance to dust generation, heat conductivity, electrical conductivity, strength, and denseness. The ceramic carbon composite material is a ceramic carbon composite material in which an interfacial layer of a ceramic is formed between carbon particles of or containing graphite. The ceramic carbon composite material can be produced by forming a green body from ceramic-coated powder in which the surfaces of carbon particles of or containing graphite are coated with individual ceramic layers and sintering the green body.
摘要:
A metallic base material is covered with a coating layer of intermetallic compound, or a plurality of metallic base materials are welded to each other with an intermetallic compound, with reduced energy consumption within a short period of time. First metallic substance 31 in powdery form is piled up on metallic base material 2. Second metallic substance 3 in molten form is delivered onto piling layer 80 of the first substance. Thus, under the control of reaction initiation temperature, coating layer (or building up coating layer) 84 of intermetallic compound having a thickness of hundreds of microns (&mgr;m) to millimeters (mm) is formed on the base material 2 by the self-exothermic reaction between the first substance and the second substance. This method is also useful in the welding of a plurality of metallic base materials to each other with an intermetallic compound. The first substance can be constituted of, for example, Ni, Co or Fe. The second substance can be constituted of, for example, Al or Ti. Each base material may be constituted of a metal common with or homologous to the first substance or second substance. The first substance and the second substance can be used in powdery form or molten form, provided that at least one thereof is used in molten form. The first substance may contain a ceramic for imparting reinforcement.
摘要:
A coated diamond which is dense and excellent in adherence and enables diamond to exhibit its superior characteristics, a manufacturing method and a composite material of the coated diamond are achieved. The coated diamond includes a diamond (1) and an SiC film (2) coating the diamond (1). The SiC mentioned above is substantially formed of &bgr;-SiC and a value of ratio I (220)/I (111) is at least 0.38 and at most 0.55, I (220) representing peak intensity of Miller index (220) of SiC and I (111) representing peak intensity of Miller index (111) thereof.
摘要:
The present invention relates to a method of sintering ceramics and ceramics obtained by said method. According to the present invention, the synthesis and sintering of ceramics can be simultaneously carried out by utilizing the reaction heat generated when at least one metallic element selected from metallic elements of IIb, IVb, Vb and VIb groups of the Periodic Table is combined with at least one nonmetallic element such as B, C N and Si without heat or by preliminarily heating the ceramics at temperatures remarkably lower than the usual sintering temperature ceramics thus-produced are superior in abrasion resistance and corrosion resistance. Furthermore, according to the present invention, particles of the same kind of metal as that used in constructing the ceramics comprising the above described metallic elements and nonmetallic elements are dispersed in a matric comprising said ceramics to obtain metal dispersed reinforced ceramics in which both the matrix and the metallic particles are strongly and chemically bonded to each other. According to the latter procedure, ceramic materials having high temperature characteristics, high corrosion resistance and high abrasion resistance, as well as high toughness and high impact resistance can be obtained.