摘要:
A design for an MOS transistor deliberately uses depletion in a polysilicon gate electrode to improve circuit performance. Conventional transistor design seeks to minimize depletion in a polysilicon gate electrode to increase drive current. According to an embodiment of the present invention, appropriate levels of depletion in the gate electrode, larger than conventional levels, simultaneously provide desired drive current while minimizing circuit delay. According to another aspect, circuit performance is improved by adjusting doping levels in the channel region to maintain a threshold voltage at the same level as that which is achieved with minimum depletion in a polysilicon gate electrode. A method of fabricating an MOS device including a polysilicon gate electrode with increased depletion is also provided. A self-aligned doping process is used in which the polysilicon gate, the source region, and the drain region, are simultaneously implanted to dopant concentrations of between 1×1019 and 5×1019 atoms/cm3.
摘要:
A semiconductor die has multiple discontinuous conductive segments arranged around a periphery of the semiconductor die, and an electrically insulating barrier within discontinuities between the conductive segments. The conductive segments and the barriers form a mechanically continuous seal ring around the semiconductor die.
摘要:
A method for integrating a magnetic tunnel junction (MTJ) device into an integrated circuit includes providing in a semiconductor back-end-of-line (BEOL) process flow a substrate having a first interlevel dielectric layer and at least a first metal interconnect. Over the first interlevel dielectric layer and the first metal interconnect, magnetic tunnel junction material layers are deposited. From the material layers a magnetic tunnel junction stack, coupled to the first metal interconnect, is defined using a single mask process. The magnetic tunnel junction stack is integrated into the integrated circuit.
摘要:
A method of reducing intralevel capacitance in a damascene metalization process employs entrapped air gaps between metal lines. The method involves forming a metalization pattern using a damascene process which includes forming at least first and second metal regions separated by a dielectric region, forming an air gap at least partially within the dielectric region, and sealing the air gap to entrap the air gap between the first and second metal regions thereby reducing intralevel capacitance between the first and second metal regions.
摘要:
A computer program product estimates performance of a back end of line (BEOL) structure of a semiconductor integrated circuit (IC). Code executes on a computer to dynamically predict an electrical resistance of the BEOL structure based on input data specific to multiple layers of the BEOL structure. The BEOL structure can be a contact or a via. The layers of the contact/via include an inner filling material and an outer liner. The code accounts for a width scatter effect of the inner filling material, as well as a slope profile of the contact/via.
摘要:
An ultra-thin dielectric film is subject to a dynamic electrical bias. During a first phase, the ultra-thin dielectric film is under a high field bias generated by the application of a high voltage. The duration of the high electrical stress is dependent on the intrinsic properties of the ultra-thin dielectric material. In a second phase, the ultra-thin dielectric film is subjected to an operating field bias generated by the application of an operating voltage. The change in the field bias exposes the dielectric to a similar dynamic stress that microelectronic devices ordinarily experience. At the operating field stage, a gate current is measured and compared to a predetermined range. Once the gate current exceeds that range the test concludes. Otherwise, the test cycles between the above-mentioned phases for a predetermined number of iterations based on prior experimental correlation. In a destructive testing mode, the process is continuous and does not conclude until the gate current exceeds a predetermined range. The ultra-thin dielectric gate current may also be measured as the ultra-thin dielectric is heated so that the transport properties or reliability of the ultra-thin dielectric is more clearly understood.
摘要:
A method for fabricating metal lines in multilevel VLSI semiconductor integrated circuit devices is provided so as to reduce parasitic capacitance. An undercutting etching step is performed so as to form trenches underneath the metal lines for accommodating air voids, followed by forming an intra-layer dielectric between the metal lines and into the trenches so as to form air voids underneath the metal lines. As a result, the parasitic capacitance will be decreased.
摘要:
A method for integrating a magnetic tunnel junction (MTJ) device into an integrated circuit includes providing in a semiconductor back-end-of-line (BEOL) process flow a substrate having a first interlevel dielectric layer and at least a first metal interconnect. Over the first interlevel dielectric layer and the first metal interconnect, magnetic tunnel junction material layers are deposited. From the material layers a magnetic tunnel junction stack, coupled to the first metal interconnect, is defined using a single mask process. The magnetic tunnel junction stack is integrated into the integrated circuit.
摘要:
Capacitive structures in integrated circuits are disclosed. The capacitive structures are formed on a substrate. Each capacitive structure includes a first conductive finger and a second conductive finger. The first and second conductive fingers are arranged in parallel with each other and separated from each other by a dielectric material. The first finger is connected to a first interconnect and the second conductive finger is connected to a second interconnect. A first capacitor is formed from a first group of the plurality of capacitive structures having respective interconnects coupled together. A second capacitor is formed from a second group of the plurality of capacitive structures having respective interconnects coupled together. The capacitive structures of the first group are intertwined with the capacitive structures of the second group.
摘要:
A test structure used to measure metal bottom coverage in semiconductor integrated circuits. The metal is deposited in etched trenches, vias and/or contacts created during the integrated circuit manufacturing process. A predetermined pattern of probe contacts are disposed about the semiconductor wafer. Metal deposited in the etched areas is heated to partially react with the underlying and surrounding undoped material. The remaining unreacted metal layer is then removed, and an electrical current is applied to the probe contacts. The resistance of the reacted portion of metal and undoped material is measured to determine metal bottom coverage. Some undoped material may also be removed to measure metal sidewall coverage. The predetermined pattern of probe contacts is preferably arranged in a Kelvin or Vander Paaw structure.