Therapeutic agent for cardiomyopathy, old myocardial infarction and chronic heart failure

    公开(公告)号:US11969459B2

    公开(公告)日:2024-04-30

    申请号:US16477878

    申请日:2018-01-26

    CPC classification number: A61K38/19 A61P9/10

    Abstract: The present inventors have found that HMGB1 fragment peptides having a particular amino acid sequence exhibit the effects of improvement of cardiac function, inhibition of cardiomyocyte hypertrophy, inhibition of myocardial fibrosis, and promotion of angiogenesis in an animal model of dilated cardiomyopathy, that the particular HMGB1 fragment peptides also exhibit the effects of improvement of cardiac function, inhibition of cardiomegaly, inhibition of cardiomyocyte hypertrophy, inhibition of myocardial fibrosis, and promotion of angiogenesis in an animal model of ischemic cardiomyopathy caused by old myocardial infarction, and that the particular HMGB1 fragment peptides exhibit the effects of inhibition of cardiomyocyte hypertrophy and inhibition of myocardial fibrosis in an animal model of hypertensive cardiomyopathy. Based on these findings, pharmaceutical compositions are provided for the prevention and/or treatment of cardiomyopathy and old myocardial infarction and chronic heart failure resulting therefrom, which comprise an HMGB1 fragment peptide having a particular amino acid sequence.

    Therapeutic agent for cardiomyopathy, old myocardial infarction and chronic heart failure

    公开(公告)号:US11826401B2

    公开(公告)日:2023-11-28

    申请号:US16477878

    申请日:2018-01-26

    CPC classification number: A61K38/19 A61P9/10

    Abstract: The present inventors have found that HMGB1 fragment peptides having a particular amino acid sequence exhibit the effects of improvement of cardiac function, inhibition of cardiomyocyte hypertrophy, inhibition of myocardial fibrosis, and promotion of angiogenesis in an animal model of dilated cardiomyopathy, that the particular HMGB1 fragment peptides also exhibit the effects of improvement of cardiac function, inhibition of cardiomegaly, inhibition of cardiomyocyte hypertrophy, inhibition of myocardial fibrosis, and promotion of angiogenesis in an animal model of ischemic cardiomyopathy caused by old myocardial infarction, and that the particular HMGB1 fragment peptides exhibit the effects of inhibition of cardiomyocyte hypertrophy and inhibition of myocardial fibrosis in an animal model of hypertensive cardiomyopathy. Based on these findings, pharmaceutical compositions are provided for the prevention and/or treatment of cardiomyopathy and old myocardial infarction and chronic heart failure resulting therefrom, which comprise an HMGB1 fragment peptide having a particular amino acid sequence.

    Myocardial cell sheet
    4.
    发明授权

    公开(公告)号:US11124770B2

    公开(公告)日:2021-09-21

    申请号:US15594011

    申请日:2017-05-12

    Abstract: A sheet-shaped cell culture is disclosed that includes myocardial cells derived from pluripotent stem cells and has excellent functional properties. A sheet-shaped cell culture obtained by culturing a cell population that includes myocardial cells derived from pluripotent stem cells, wherein the proportion of the number of the myocardial cells derived from pluripotent stem cells to the total number of cells in the cell population is 50% to 70%; a method of producing the sheet-shaped cell culture; a composition including the sheet-shaped cell culture; and a method of treating a disease using the sheet-shaped cell culture or the composition.

    CATHETER FOR AORTIC VALVULOPLASTY
    10.
    发明申请

    公开(公告)号:US20220323726A1

    公开(公告)日:2022-10-13

    申请号:US17641669

    申请日:2020-09-08

    Abstract: To provide a catheter for aortic valvuloplasty in which it is possible to significantly increase the therapeutic effect despite being minimally invasive. The present invention provides a catheter for aortic valvuloplasty characterized by including: first to third balloons that can expand and contract due to supply of a fluid, it being possible to change the relative positional relationships of the first to third balloons; first to third shafts that connect to the first to third balloons at the tip and supply fluid to the first to third balloons to cause the first to third balloons to expand and contract independently of each other; and at least one wire that introduces the first to third balloons from outside the patient's body to the aortic valve.

Patent Agency Ranking