摘要:
Methods and apparatus for treating meniscal tissue damage are disclosed, including a biocompatible meniscal repair device comprising a biocompatible tissue repair scaffold and a cell growth conduit flap. The tissue repair scaffold is adapted to be placed in contact with a defect in the meniscus and can preferably provide a structure for supporting meniscal tissue and/or encouraging tissue growth. The cell growth conduit flap, which is attached to the tissue repair scaffold, allows communication between the synovium and the tissue repair scaffold.
摘要:
Methods and apparatus for treating meniscal tissue damage are disclosed, including a biocompatible meniscal repair device comprising a stent. The tissue repair device is adapted to be placed in contact with a defect in the meniscus and can preferably provide a structure for supporting meniscal tissue and/or encouraging tissue growth through contact with vascularized portions of the meniscus or as a conduit for introduction of exogenous healing therapies.
摘要:
Biocompatible tissue implants are provided for repairing a tissue injury or defect. The tissue implants comprise a biological tissue slice that serves as a source of viable cells capable of tissue regeneration and/or repair. The biological tissue slice can be harvested from healthy tissue to have a geometry that is suitable for implantation at the site of the injury or defect. The harvested tissue slice is dimensioned to allow the viable cells contained within the tissue slice to migrate out and proliferate and integrate with tissue surrounding the injury or defect site. Methods for repairing a tissue injury or defect using the tissue implants are also provided.
摘要:
This invention relates to a syringe-activated valve for flushing a catheter for delivering an implant to an anatomical site, such as a patent foramen ovale in a patient and method thereof. In one embodiment, a catheter includes a proximal end, a distal end, a “Y” connector at the proximal end, the “Y” connector having a guide wire port and a connector port, a syringe activated valve having a first end and a second end, the second end of syringe-activated valve connecting to the connector port of the “Y” connector, and a syringe connecting to the first end of the syringe-activated valve. Saline is injected by the syringe through the syringe-activated valve into the proximal end of the catheter, thereby flushing air from the catheter lumen out of the distal end of the catheter.
摘要:
Disclosed is an occluder for closing an intracardiac defect, such as a patent foramen ovale (PFO), and a method for making the same. The occluder includes a frame and at least one scaffold which are formed from a bioabsorbable polymer, such as poly-4-hydroxybutyrate. The surface of the frame and scaffold are textured to promote cell attachment. Texturing of the surface can be achieved by any number of mechanical or chemical procedures. The device is coated with collagen and heparin which are covalently bound to the surface of the device. The occluder provides improved defect closure compared to other septal occluders known in the art. In particular, the occluder described is specifically designed to improve host cell attachment to and tissue ingrowth over the device when implanted in a patient as compared to the level of host cell attachment and tissue ingrowth achieved with other implantable devices made of bioabsorbable polymers.
摘要:
The present invention provides methods and devices for sealing intracardiac defects, such as a patent foramen ovale (PFO) utilizing an electrode positioned in the lumen of the defect such as the tunnel of a PFO.
摘要:
Devices and techniques for modifying and maintaining a configuration of an occlusion device for the closure of physical anomalies, such as an atrial septal defect, a patent foramen ovale (PFO), and other septal and vascular defects are described. The devices and techniques relate particularly to, but are not limited to, modifying and maintaining a configuration of a PFO occluder made from a polymer tube. The proximal portion of a catch member may be provided with one or more protrusions, or arms, or bump or other raised element for securing the occluder in a partial or fully deployed configuration, either temporarily or permanently.
摘要:
The present invention provides an occluder for a biological defect, such as an atrial septal defect (ASD) or a patent foramen ovale (PFO). The occluder is at least partially formed of a radiopaque, bioabsorbable material. In some embodiments, the occluder is formed from a tube, which is cut to produce struts in each side. Upon the application of force, the struts deform into loops. The radiopaque, bioabsorbable material is a blend of a biocompatible radiopaque material with a bioabsorbable material. In some embodiments, the radiopaque material may have a mass attenuation coefficient greater than about 1.2 cm2/gm and/or a linear attenuation coefficient greater than about 9 cm−1. In some embodiments, the radiopaque material is tungsten. In some embodiments, the bioabsorbable material may have a molecular weight greater than about 300,000. In some embodiments, the bioabsorbable material is a polymer.
摘要:
A biocompatible meniscal repair device is disclosed. The tissue repair device includes a scaffold adapted to be placed in contact with a defect in a meniscus, the scaffold comprising a high-density, dry laid nonwoven polymeric material and a biocompatible foam. The scaffold provides increased suture pull-out strength.
摘要:
The present invention provides a device for occluding an anatomical aperture, such as an atrial septal defect (ASD) or a patent foramen ovale (PFO). The occluder includes two sides connected by a central tube. A tissue scaffold material is disposed on the occluder. The occluder is formed from a tube, which is cut to produce struts in each side. Upon the application of force, the struts deform into loops. The loops may be of various shapes, sizes, and configurations, and, in at least some embodiments, the loops have rounded peripheries. In some embodiments, at least one side of the occluder includes a tissue scaffold. The occluder further includes a catch system that maintains its deployed state in vivo. When the occluder is deployed in vivo, the two sides are disposed on opposite sides of the septal tissue surrounding the aperture and the catch system is deployed so that the occluder exerts a compressive force on the septal tissue and closes the aperture.