摘要:
A method for fabricating a thermally stable ultralow dielectric constant film comprising Si, C, O and H atoms in a parallel plate chemical vapor deposition process utilizing a plasma enhanced chemical vapor deposition (“PECVD”) process is disclosed. Electronic devices containing insulating layers of thermally stable ultralow dielectric constant materials that are prepared by the method are further disclosed. To enable the fabrication of a thermally stable ultralow dielectric constant film, specific precursor materials are used, such as, silane derivatives, for instance, diethoxymethylsilane (DEMS) and organic molecules, for instance, bicycloheptadiene and cyclopentene oxide.
摘要:
A method for fabricating a thermally stable ultralow dielectric constant film comprising Si, C, O and H atoms in a parallel plate chemical vapor deposition process utilizing a plasma enhanced chemical vapor deposition (“PECVD”) process is disclosed. Electronic devices containing insulating layers of thermally stable ultralow dielectric constant materials that are prepared by the method are further disclosed. To enable the fabrication of a thermally stable ultralow dielectric constant film, specific precursor materials are used, such as, silane derivatives, for instance, diethoxymethylsilane (DEMS) and organic molecules, for instance, bicycloheptadiene and cyclopentene oxide.
摘要:
A method for fabricating a thermally stable ultralow dielectric constant film including Si, C, O and H atoms in a parallel plate chemical vapor deposition process utilizing a plasma enhanced chemical vapor deposition (“PECVD”) process is disclosed. Electronic devices containing insulating layers of thermally stable ultralow dielectric constant materials that are prepared by the method are further disclosed. To enable the fabrication of a thermally stable ultralow dielectric constant film, specific precursor materials are used, such as, silane derivatives, for instance, diethoxymethylsilane (DEMS) and organic molecules, for instance, bicycloheptadiene and cyclopentene oxide.
摘要:
A method for fabricating a thermally stable ultralow dielectric constant film comprising Si, C, O and H atoms in a parallel plate chemical vapor deposition process utilizing a plasma enhanced chemical vapor deposition (“PECVD”) process is disclosed. Electronic devices containing insulating layers of thermally stable ultralow dielectric constant materials that are prepared by the method are further disclosed. To enable the fabrication of a thermally stable ultralow dielectric constant film, specific precursor materials are used, such as, silane derivatives, for instance, diethoxymethylsilane (DEMS) and organic molecules, for instance, bicycloheptadiene and cyclopentene oxide.
摘要:
The present invention provides an access method and a system for a Machine-Type Communication (MTC) device, and an MTC device. The method comprises the steps of: an MTC device sending, when performing channel request, a channel request cause value and a random reference value to a Base Station Subsystem (BSS) (100), and the BSS sending the received channel request cause value and random reference value back to the MTC device when completing channel allocation (101). The present invention distinguishes the MTC services from other non-MTC services through the channel request cause value, that is, when the cause values are different, the collision will not occur even if the random reference values are the same, thus reducing the probability of the random reference value collision, implementing the effective management for access operations of large numbers of MTC devices, and avoiding the influence of random reference value collision on the normal implementation of original services.
摘要:
The present invention discloses an enhanced base station, which includes a Um interface functional module (1), a base station functional module (2), a controller functional module (3), and an A interface functional module (4), wherein the Um interface functional module (1), the base station functional module (2) and the A interface functional module (4) carry out the function of a BTS, and the controller functional module (3) and the A interface functional module (4) carry out the function of a BSC. The present invention also provides a method and a GSM system for realizing a flat mobile communication, wherein the enhanced base station carries out the functions of a BTS and a BSC in a conventional GSM system. Application of the present invention can decrease the number of devices for constituting the GSM system and the number of forwarding devices between a calling MS and a called MS, therefore reduce the time for service data transmission and improve the reliability of the transmission.
摘要:
A method for acquiring support capability of a mobile terminal by a base station side system is disclosed in the present disclosure, and the method includes: the base station side system applies a co-frequency interference to the mobile terminal, and detects a measurement report which is fed back by the mobile terminal after the co-frequency interference is applied, and determines and acquires the support capability of the mobile terminal for voice services over adaptive multi-user channels on one slot according to associated parameters in the detected measurement report in combination with associated threshold values. A system for acquiring support capability of the mobile terminal by the base station side system is also disclosed in the present disclosure. In the system, a base station side determining unit is configured to determine and acquire the support capability of the mobile terminal for voice services over adaptive multi-user channels on one slot according to associated parameters in detected measurement report in combination with associated threshold values. With the method and system in the present disclosure, the base station side system can adaptively and accurately acquire the support capability of the mobile terminal for Voice services over adaptive multi-user channels on one slot.
摘要:
A method for indicating a frame mapping way is provided, including: a network side notifying a mobile station of information of a SACCH frame mapping way used by the mobile station. An apparatus for indicating a frame mapping way is further provided, including a determination unit and a notification unit, wherein the determination unit is for determining a used SACCH frame mapping way for a mobile station; the notification unit is for notifying the mobile station of information of a SACCH frame mapping way used by the mobile station. With the invention, the network side can notify the mobile station of the information of which frame mapping way is used determined for the mobile station, thereby solving the problem that the mobile station does not know which frame mapping way is used, greatly improving the performance of the communication system after the mobile station uses the determined frame mapping way.
摘要:
The present invention provides a method of forming asymmetric field-effect-transistors. The method includes forming a gate structure on top of a semiconductor substrate, the gate structure including a gate stack and spacers adjacent to sidewalls of the gate stack, and having a first side and a second side opposite to the first side; performing angled ion-implantation from the first side of the gate structure in the substrate, thereby forming an ion-implanted region adjacent to the first side, wherein the gate structure prevents the angled ion-implantation from reaching the substrate adjacent to the second side of the gate structure; and performing epitaxial growth on the substrate at the first and second sides of the gate structure. As a result, epitaxial growth on the ion-implanted region is much slower than a region experiencing no ion-implantation. A source region formed to the second side of the gate structure by the epitaxial growth has a height higher than a drain region formed to the first side of the gate structure by the epitaxial growth. A semiconductor structure formed thereby is also provided.
摘要:
A method for forming a field effect device includes forming a gate portion on a silicon-on-insulator layer (SOI), forming first spacer members on the SOI layer adjacent to the gate portion, depositing a layer of spacer material on the SOI layer, the first spacer members, and the gate portion, removing portions of the layer of spacer material to form second spacer members on the SOI layer adjacent to the first spacer members, forming a source region and a drain region on the SOI layer by implanting ions in the SOI layer, and etching to remove the second spacer members.