Abstract:
A method processing a workpiece in a plasma reactor chamber in which a first one of plural applied RF plasma powers is modulated in accordance with a time-varying modulation control signal corresponding to a desired process transient cycle. The method achieves a reduction in reflected power by modulating a second one of the plural plasma powers in response to the time-varying modulation control signal.
Abstract:
Apparatus and methods are provided for a power matching apparatus for use with a processing chamber. In one aspect of the invention, a power matching apparatus is provided including a first RF power input coupled to a first adjustable capacitor, a second RF power input coupled to a second adjustable capacitor, a power junction coupled to the first adjustable capacitor and the second adjustable capacitor, a receiver circuit coupled to the power junction, a high voltage filter coupled to the power junction and the high voltage filter has a high voltage output, a voltage/current detector coupled to the power junction and a RF power output connected to the voltage/current detector.
Abstract:
RF ground return current flow is diverted away from asymmetrical features of the reactor chamber by providing bypass current flow paths. One bypass current flow path avoids the pumping port in the chamber floor, and comprises a conductive symmetrical grill extending from the side wall to the grounded pedestal base. Another bypass current flow path avoids the wafer slit valve, and comprises an array of conductive straps bridging the section of the sidewall occupied by the slit valve.
Abstract:
A method is provided in plasma processing of a workpiece for stabilizing the plasma against engineered transients in applied RF power, by modulating an unmatched low power RF generator in synchronism with the transient.
Abstract:
A plasma reactor for processing a workpiece such as a semiconductor wafer using predetermined transients of plasma bias power or plasma source power has unmatched low power RF generators synchronized to the transients to minimize transient-induced changes in plasma characteristics.
Abstract:
Methods for monitoring process drift using plasma characteristics are provided. In one embodiment, a method for monitoring process drift using plasma characteristics includes obtaining metrics of current and voltage information of a first waveform coupled to a plasma during a plasma process formed on a substrate, obtaining metrics of current and voltage information of a second waveform coupled to the plasma during the plasma process formed on the substrate, the first and second waveforms having different frequencies, determining at least one characteristic of the plasma using the metrics obtained from each different frequency waveform, and adjusting the plasma process in response to the determined at least one characteristic of the plasma.
Abstract:
A method is provided for processing a workpiece in a plasma reactor chamber having electrodes including at least a ceiling electrode and a workpiece support electrode. The method includes coupling respective RF power sources of respective VHF frequencies f1 and f2 to either (a) respective ones of the electrodes or (b) a common one of the electrodes, where f1 is sufficiently high to produce a center-high non-uniform plasma ion distribution and f2 is sufficiently low to produce a center-low non-uniform plasma ion distribution. The method further includes adjusting a ratio of an RF parameter at the f1 frequency to the RF parameter at the f2 frequency so as to control plasma ion density distribution, the RF parameter being any one of RF power, RF voltage or RF current.
Abstract:
A plasma reactor includes a ceiling electrode facing a workpiece support pedestal and a pedestal electrode in the pedestal and first and second VHF power sources of different frequencies coupled to the same or to different ones of the ceiling electrode and the pedestal electrode. The first and second VHF power sources are of sufficiently high and sufficiently low frequencies, respectively, to produce center-high and center-low plasma distribution non-uniformities, respectively, in the chamber. The reactor further includes a controller programmed to change the relative output power levels of the first and second VHF power sources to: (a) increase the relative output power level of the first VHF power source whenever plasma ion distribution has a predominantly edge-high non-uniformity, and (b) increase the relative output power level of the second VHF power source whenever plasma ion distribution has a predominantly center-high non-uniformity.
Abstract:
A method of processing a workpiece in a plasma reactor chamber includes coupling RF power via an electrode to plasma in the chamber, the RF power being of a variable frequency in a frequency range that includes a fundamental frequency f. The method also includes coupling the electrode to a resonator having a resonant VHF frequency F which is a harmonic of the fundamental frequency f, so as to produce VHF power at the harmonic. The method controls the ratio of power near the fundamental f to power at harmonic F, by controlling the proportion of power from the generator that is up-converted from f to F, so as to control plasma ion density distribution.
Abstract:
Apparatus and methods are provided for a power matching apparatus for use with a processing chamber. In one aspect of the invention, a power matching apparatus is provided including a first RF power input coupled to a first adjustable capacitor, a second RF power input coupled to a second adjustable capacitor, a power junction coupled to the first adjustable capacitor and the second adjustable capacitor, a receiver circuit coupled to the power junction, a high voltage filter coupled to the power junction and the high voltage filter has a high voltage output, a voltage/current detector coupled to the power junction and a RF power output connected to the voltage/current detector.