Abstract:
A method of processing a workpiece in a plasma reactor chamber includes coupling RF power via an electrode to plasma in the chamber, the RF power being of a variable frequency in a frequency range that includes a fundamental frequency f. The method also includes coupling the electrode to a resonator having a resonant VHF frequency F which is a harmonic of the fundamental frequency f, so as to produce VHF power at the harmonic. The method controls the ratio of power near the fundamental f to power at harmonic F, by controlling the proportion of power from the generator that is up-converted from f to F, so as to control plasma ion density distribution.
Abstract:
Methods for forming dual damascene structures in low-k dielectric materials that facilitate reducing photoresist poison issues are provided herein. In some embodiments, such methods may include plasma etching a via through a first mask layer into a low-k dielectric material disposed on a substrate. The first mask layer may then be removed using a process including exposing the first mask layer to a first plasma comprising an oxygen containing gas and at least one of a dilutant gas or a passivation gas, and subsequently exposing the first mask layer to a second plasma comprising an oxygen containing gas and formed using one of either plasma bias power or plasma source power. An anti-reflective coating may then be deposited into the via and atop the low-k dielectric material. A trench may then be plasma etched through a second mask layer formed atop the anti-reflective coating into the low-k dielectric material.
Abstract:
A method of processing a workpiece in a plasma reactor chamber includes coupling RF power via an electrode to plasma in the chamber, the RF power being of a variable frequency in a frequency range that includes a fundamental frequency f. The method also includes coupling the electrode to a resonator having a resonant VHF frequency F which is a harmonic of the fundamental frequency f, so as to produce VHF power at the harmonic. The method controls the ratio of power near the fundamental f to power at harmonic F, by controlling the proportion of power from the generator that is up-converted from f to F, so as to control plasma ion density distribution.
Abstract:
In a plasma reactor chamber a ceiling electrode and a workpiece support electrode, respective RF power sources of respective VHF frequencies f1 and f2 are coupled to either respective ones of the electrodes or to a common one of the electrodes, where f1 is sufficiently high to produce a center-high non-uniform plasma ion distribution and f2 is sufficiently low to produce a center-low non-uniform plasma ion distribution. Respective center ground return paths are provided for RF current passing directly between the ceiling electrode and the workpiece support electrode for the frequencies f1 and f2, and an edge ground return path is provided for each of the frequencies f1 and f2. The impedance of at least one of the ground return paths is adjusted so as to control the uniformity of the plasma ion density distribution.
Abstract:
A method for processing a workpiece in a plasma reactor chamber includes coupling RF power at a first VHF frequency f1 to a plasma via one of the electrodes of the chamber, and providing a center ground return path for RF current passing directly between the ceiling electrode and the workpiece support electrode for the frequency f1. The method further includes providing a variable height edge ground annular element and providing a ground return path through the edge ground annular element for the frequency f1. The method controls the uniformity of plasma ion density distribution by controlling the distance between the variable height edge ground annular element and one of: (a) height of ceiling electrode or (b) height of workpiece support electrode.
Abstract:
In a plasma reactor chamber a ceiling electrode and a workpiece support electrode, respective RF power sources of respective VHF frequencies f1 and f2 are coupled to either respective ones of the electrodes or to a common one of the electrodes, where f1 is sufficiently high to produce a center-high non-uniform plasma ion distribution and f2 is sufficiently low to produce a center-low non-uniform plasma ion distribution. Respective center ground return paths are provided for RF current passing directly between the ceiling electrode and the workpiece support electrode for the frequencies f1 and f2, and an edge ground return path is provided for each of the frequencies f1 and f2. The impedance of at least one of the ground return paths is adjusted so as to control the uniformity of the plasma ion density distribution.
Abstract:
A method is provided for processing a workpiece in a plasma reactor chamber having electrodes including at least a ceiling electrode and a workpiece support electrode. The method includes coupling respective RF power sources of respective VHF frequencies f1 and f2 to either (a) respective ones of the electrodes or (b) a common one of the electrodes, where f1 is sufficiently high to produce a center-high non-uniform plasma ion distribution and f2 is sufficiently low to produce a center-low non-uniform plasma ion distribution. The method further includes adjusting a ratio of an RF parameter at the f1 frequency to the RF parameter at the f2 frequency so as to control plasma ion density distribution, the RF parameter being any one of RF power, RF voltage or RF current.
Abstract:
A method is provided for processing a workpiece in a plasma reactor chamber. The method includes coupling, to a plasma in the chamber, power of an RF frequency via a ceiling electrode and coupling, to the plasma, power of at least approximately the same RF frequency via a workpiece support electrode. The method also includes providing an edge ground return path. The method further includes adjusting the proportion between (a) current flow between said electrodes and (b) current flow to the edge ground return path from said electrodes, to control plasma ion density distribution uniformity over the workpiece.
Abstract:
High aspect ratio contact openings are etched while preventing bowing or bending of the etch profile by forming a highly conductive thin film on the side wall of each contact opening. The conductivity of the thin film on the side wall is enhanced by ion bombardment carried out periodically during the etch process.
Abstract:
A method is provided for processing a workpiece in a plasma reactor chamber having electrodes including at least a ceiling electrode and a workpiece support electrode. The method includes coupling respective RF power sources of respective VHF frequencies f1 and f2 to either (a) respective ones of the electrodes or (b) a common one of the electrodes, where f1 is sufficiently high to produce a center-high non-uniform plasma ion distribution and f2 is sufficiently low to produce a center-low non-uniform plasma ion distribution. The method further includes adjusting a ratio of an RF parameter at the f1 frequency to the RF parameter at the f2 frequency so as to control plasma ion density distribution, the RF parameter being any one of RF power, RF voltage or RF current.