摘要:
A magnetic data track used in a magnetic shift register memory system may be fabricated by forming a multilayered stack of alternating dielectric and/or silicon layers. A trench is etched in the multi-layer stack structure. A selective etching process is used to corrugate the walls of trench. A seed layer is applied to the walls and bottom of the trench; the seed layer is covered with a magnetic layer. The trench is filled with an insulating material. A patterned layer is applied and portions of insulating material exposed by the pattern are removed, forming holes. Magnetic material and seed layer exposed in holes is selectively removed. The holes are filled with insulating material and connecting leads are attached to data tracks.
摘要:
A magnetic data track used in a magnetic shift register memory system may be fabricated by forming a multilayered stack of alternating dielectric and/or silicon layers. A trench is etched in the multi-layer stack structure. A selective etching process is used to corrugate the walls of trench. A seed layer is applied to the walls and bottom of the trench; the seed layer is covered with a magnetic layer. The trench is filled with an insulating material. A patterned layer is applied and portions of insulating material exposed by the pattern are removed, forming holes. Magnetic material and seed layer exposed in holes is selectively removed. The holes are filled with insulating material and connecting leads are attached to data tracks.
摘要:
The use of ferrimagnetic materials is proposed for use in magnetic devices. Such magnetic devices include magnetic tunnel junctions (MTJ) which have at least two magnetic layers separated by an insulating barrier layer, wherein at least one of the two magnetic layers is ferrimagnetic. Such MTJ's are used in MRAM (magnetic random access memory) structures. Where the magnetic device is a magnetic sensor, it preferably includes a layer that comprises a ferrimagnetic material separated from another magnetic layer by a barrier layer and the magnetizations of the magnetic layer are oriented at an angle to one another.
摘要:
A magnetoresistive (MR) sensor comprising a layered structure having at least one trilayer comprising a first and a second thin film ferromagnetic layers separated by and in interfacial contact with a third thin film non-metallic magnetic layer. A fourth thin film layer of material is within the first ferromagnetic layer, and the fourth layer has a thickness between a fraction of a monolayer and several monolayers and is located at predetermined distance from the interface between the first and third layers. A current flow is produced through the MR sensor and variations in resistivity of the MR sensor produced by rotation of the magnetization in one or both of the ferromagnetic layers is sensed as a function of the magnetic field being sensed.
摘要:
An improved thin film magnetoresistive (MR) sensor uses an alloy comprising Fe.sub.(1-x) Mn.sub.x, where x is within the range of 0.3 to 0.4, as an antiferromagnetic layer to provide longitudinal exchange bias in the ferromagnetic MR layer. In a specific embodiment the exchange bias is at a high level and is independent of thickness of the antiferromagnetic layer over a wide range.
摘要:
A method for forming a memory device includes forming a cavity having an inner surface with an undulating profile in a substrate, depositing a ferromagnetic material in the cavity, forming a reading element on the substrate proximate to a portion of the ferromagnetic material, and forming a writing element on the substrate proximate to a second portion of the ferromagnetic material.
摘要:
Digital information is stored in an unpatterned magnetic film, using the inherent, natural properties of the domain walls in ferromagnetic materials to write data on an unpatterned magnetic film. Data is read from the unpatterned magnetic film using magnetic tunneling junctions (MTJs). To achieve sufficient thermal stability, the magnetic fields required to change the orientation of these magnetic regions may be much larger than can be provided by currents passing through wires. This larger magnetic field is achieved by using the domain wall fringing field generated at the boundary between two magnetic domain walls. The magnetic regions are written by using the fringing fields from magnetic domain walls in neighboring magnetic wires. These wires are brought close to the magnetic storage layer where the magnetic storage regions are to be written.
摘要:
A magnetic data track used in a magnetic shift register memory system may be fabricated by forming a multilayered stack of alternating dielectric and/or silicon layers. Vias of approximately 10 microns tall with a cross-section on the order of 100 nm×100 nm are etched in this multilayered stack of alternating layers. Vias may be etched form smooth or notched walls. Vias are filled by electroplating layers of alternating types of ferromagnetic or ferrimagnetic metals. The alternating ferromagnetic or ferrimagnetic layers are comprised of magnetic materials with different magnetization or magnetic exchange or magnetic anisotropies. These different magnetic characteristics allow the pinning of magnetic domain walls at the boundaries between these layers. Alternatively, vias are filled with a homogeneous ferromagnetic material. Magnetic domain walls are formed by the discontinuity in the ferromagnetic or ferromagnetic material that occurs at the notches or at the protuberances along the via walls.
摘要:
A writing device can change the direction of the magnetic moment in a magnetic shift register, thus writing information to the domains or bits in the magnetic shift register. Associated with each domain wall are large magnetic fringing fields. The domain wall concentrates the change in magnetism from one direction to another in a very small space. Depending on the nature of the domain wall, very large dipolar fringing fields can emanate from the domain wall. This characteristic of magnetic domains is used to write to the magnetic shift register. When the domain wall is moved close to another magnetic material, the large fields of the domain wall change the direction of the magnetic moment in the magnetic material, effectively “writing” to the magnetic material.
摘要:
Stable, bulk electrical superconductors are prepared by heating mixed metal oxides in the presence of oxygen in a closed vessel in a preheated oven for 1-5 hours at 850.degree.-900.degree. C. The final oxides are in the molar ratio Tol.sub.0.6-1.1 Ca.sub.2-3 Ba.sub.0.75-1.25 Cu.sub.2-3 O.sub.(5+.delta.)-(9+.delta.), where .delta. is less than one.