摘要:
A magnetoresistive (MR) sensor comprising a layered structure having at least one trilayer comprising a first and a second thin film ferromagnetic layers separated by and in interfacial contact with a third thin film non-metallic magnetic layer. A fourth thin film layer of material is within the first ferromagnetic layer, and the fourth layer has a thickness between a fraction of a monolayer and several monolayers and is located at predetermined distance from the interface between the first and third layers. A current flow is produced through the MR sensor and variations in resistivity of the MR sensor produced by rotation of the magnetization in one or both of the ferromagnetic layers is sensed as a function of the magnetic field being sensed.
摘要:
A magnetoresistive (MR) sensor comprising a layered structure having at least one trilayer comprising a first and a second thin film ferromagnetic layers separated by and in interfacial contact with a third thin film non-metallic layer. A fourth thin film layer of material is within the first ferromagnetic layer, and the fourth layer has a thickness between a fraction of a monolayer and several monolayer and is located at predetermined distance from the interface between the first and third layers. A current flow is produced through the MR sensor and variations in resistivity of the MR sensor produced by rotation of the magnetization in one or both of the ferromagnetic layers is sensed as a function of the magnetic field being sensed.
摘要:
A magnetoresistive (MR) sensor comprising a first and a second thin film layer of a magnetic material separated by a thin film layer of a non-magnetic metallic material. The first ferromagnetic layer is magnetically soft. The magnetization direction of the first layer of magnetic material is set substantially perpendicular to the magnetization of the second layer of magnetic material at zero applied field, and the magnetization direction of the second layer of magnetic material is fixed. A current flow is produced through the MR sensor, and the variations in voltage across the MR sensor are sensed due to changes in resistance of the MR sensor produced by rotation of the magnetization in the first layer of magnetic material as a function of the magnetic field being sensed. The variation of the resistance with the angle between the magnetizations of the first and second layers of magnetic material has been defined as the spin valve (SV) effect. It is also shown that, by a suitable direction of the current with respect to the fixed magnetization, the (SV) magnetoresistance can be added constructively to the usual anisotropic magnetoresistance.
摘要:
A magnetic recording data storage system of high recording density is made possible by an improved magnetoresistive sensor. The sensor has a ferromagnetic sensing layer that is a laminated layer of two ferromagnetic films antiferromagnetically coupled to one another and separated by an antiferromagnetically coupling film. By appropriate selection of the thickness of the nonmagnetic antiferromagnetically coupling film, the ferromagnetic films become antiferromagnetically coupled and their magnetizations rotate as a single rigid unit in the presence of the external magnetic field to be sensed. The ferromagnetic sensing layer can be used in conventional magnetoresistive sensors of the anisotropic magnetoresistive (AMR) type and in spin valve magnetoresistive (SVMR) sensors. In the spin valve sensor, the laminated ferromagnetic sensing layer serves as the free layer and is preferably formed of two films of nickel-iron (Ni-Fe) separated by a ruthenium (Ru) antiferromagnetically coupling film. Because the two ferromagnetic films have their moments aligned antiparallel, then, assuming the two films are made of the same material, by selecting the two films to have different thicknesses the effective free layer thickness can be reduced without significantly reducing the magnetoresistance.
摘要:
A magnetoresistive (MR) sensor comprising a layered structure formed on a substrate includes a first and a second thin film layer of magnetic material separated by a thin film layer of non-magnetic metallic material such as Cu, Au, or Ag, with at least one of the layers of ferromagnetic material formed of either cobalt or a cobalt alloy. The magnetization direction of the first ferromagnetic layer, at zero applied field, is set substantially perpendicular to the magnetization direction of the second ferromagnetic layer which is fixed in position. A current flow is produced through the sensor, and the variations in voltage across the MR sensor are sensed due to the changes in resistance produced by rotation of the magnetization in the front layer of ferromagnetic material as a function of the magnetic field being sensed.
摘要:
An improved thin film magnetoresistive (MR) sensor uses an alloy comprising Fe.sub.(1-x) Mn.sub.x, where x is within the range of 0.3 to 0.4, as an antiferromagnetic layer to provide longitudinal exchange bias in the ferromagnetic MR layer. In a specific embodiment the exchange bias is at a high level and is independent of thickness of the antiferromagnetic layer over a wide range.
摘要:
A magnetic data track used in a magnetic shift register memory system may be fabricated by forming a multilayered stack of alternating dielectric and/or silicon layers. A trench is etched in the multi-layer stack structure. A selective etching process is used to corrugate the walls of trench. A seed layer is applied to the walls and bottom of the trench; the seed layer is covered with a magnetic layer. The trench is filled with an insulating material. A patterned layer is applied and portions of insulating material exposed by the pattern are removed, forming holes. Magnetic material and seed layer exposed in holes is selectively removed. The holes are filled with insulating material and connecting leads are attached to data tracks.
摘要:
A magnetic data track used in a magnetic shift register memory system may be fabricated by forming a multilayered stack of alternating dielectric and/or silicon layers. A trench is etched in the multi-layer stack structure. A selective etching process is used to corrugate the walls of trench. A seed layer is applied to the walls and bottom of the trench; the seed layer is covered with a magnetic layer. The trench is filled with an insulating material. A patterned layer is applied and portions of insulating material exposed by the pattern are removed, forming holes. Magnetic material and seed layer exposed in holes is selectively removed. The holes are filled with insulating material and connecting leads are attached to data tracks.
摘要:
The use of ferrimagnetic materials is proposed for use in magnetic devices. Such magnetic devices include magnetic tunnel junctions (MTJ) which have at least two magnetic layers separated by an insulating barrier layer, wherein at least one of the two magnetic layers is ferrimagnetic. Such MTJ's are used in MRAM (magnetic random access memory) structures. Where the magnetic device is a magnetic sensor, it preferably includes a layer that comprises a ferrimagnetic material separated from another magnetic layer by a barrier layer and the magnetizations of the magnetic layer are oriented at an angle to one another.
摘要:
A method for forming a memory device includes forming a cavity having an inner surface with an undulating profile in a substrate, depositing a ferromagnetic material in the cavity, forming a reading element on the substrate proximate to a portion of the ferromagnetic material, and forming a writing element on the substrate proximate to a second portion of the ferromagnetic material.