摘要:
An integrated circuit wafer element and an improved method for bonding the same to produce a stacked integrated circuit. An integrated circuit wafer according to the present invention includes a substrate having first and second surfaces constructed from a wafer material, the first surface having a circuit layer that includes integrated circuit elements constructed thereon. A plurality of vias extend from the first surface through the circuit layer and terminate in the substrate at a first distance from the first surface. The vias include a stop layer located in the bottom of each via constructed from a stop material that is more resistant to chemical/mechanical polishing (CMP) than the wafer material. The vias may be filled with an electrically conducting material to provide vertical connections between the various circuit layers in a stacked integrated circuit. In this case, the electrical conducting vias are also connected to various circuit elements by metallic conductors disposed in a dielectric layer that covers the circuit layer. A plurality of bonding pads are provided on one surface of the integrated circuit wafer. These pads may be part of the vias. These pads preferably extend above the surface of the integrated circuit wafer. A stacked integrated circuit according to the present invention is constructed by bonding two integrated circuit wafers together utilizing the bonding pads. One of the integrated circuit wafers is then thinned to a predetermined thickness determined by the depth of the vias by chemical/mechanical polishing (CMP) of the surface of that integrated circuit wafer that is not bonded to the other integrated circuit wafer, the stop layer in the vias preventing the CMP from removing wafer material that is within the first distance from the first surface of the substrate of the wafer being thinned.
摘要:
A method for forming dual-damascene type conducting interconnects with non-metallic barriers that protect said interconnects from fluorine out-diffusion from surrounding low-k, fluorinated dielectric materials. One embodiment of the method is particularly suited for forming such interconnects in microelectronics fabrications of the sub 0.15 micron generation.
摘要:
A new method of forming metal interconnect levels containing damascene interconnects and via plugs in the manufacture of an integrated circuit device has been achieved. The method creates a reversed dual damascene structure. A first dielectric layer is provided overlying a semiconductor substrate. The dielectric layer is patterned to form trenches for planned damascene interconnects. Insulating spacers may optionally be formed on the trench sidewalls. A conductive barrier layer is deposited overlying the dielectric layer and lining the trenches. A metal layer, preferably comprising copper, is deposited overlying the conductive barrier layer and filling the trenches. The metal layer and the conductive barrier layer are polished down to thereby form the damascene interconnects. A passivation layer may optionally be deposited. The damascene interconnects are patterned to form via plugs overlying the damascene interconnects. The patterning comprises partially etching down the damascene interconnects using a via mask overlying and protecting portions of the damascene interconnects. A trench mask also overlies and protects the first dielectric layer from metal contamination during the etching down.
摘要:
A method for removing unreacted nickel or cobalt after silicidation using carbon monoxide dry stripping is described. Shallow trench isolation regions are formed in a semiconductor substrate surrounding and electrically isolating an active area from other active areas. A gate electrode and associated source and drain regions are formed in the active area wherein dielectric spacers are formed on sidewalls of the gate electrode. A nickel or cobalt layer is deposited over the gate electrode and associated source and drain regions, shallow trench isolation regions, and dielectric spacers. The semiconductor substrate is annealed whereby the nickel or cobalt layer overlying the gate electrode and said source and drain regions is transformed into a nickel or cobalt silicide layer and wherein the nickel or cobalt layer overlying the dielectric spacers and the shallow trench isolation regions is unreacted. The unreacted nickel or cobalt layer is exposed to a plasma containing carbon monoxide gas wherein the carbon monoxide gas reacts with the unreacted nickel or cobalt thereby removing the unreacted nickel or cobalt from the substrate to complete salicidation of the integrated circuit device.
摘要:
A method for forming dual-damascene type conducting interconnects with non-metallic barriers that protect said interconnects from fluorine out-diffusion from surrounding low-k, fluorinated dielectric materials. One embodiment of the method is particularly suited for forming such interconnects in microelectronics fabrications of the sub 0.15 micron generation.
摘要:
A method for forming dual-damascene type conducting interconnects with non-metallic barriers that protect said interconnects from fluorine out-diffusion from surrounding low-k, fluorinated dielectric materials. One embodiment of the method is particularly suited for forming such interconnects in microelectronics fabrications of the sub 0.15 micron generation.
摘要:
A method for forming dual-damascene type conducting interconnects with non-metallic barriers that protect said interconnects from fluorine out-diffusion from surrounding low-k, fluorinated dielectric materials. One embodiment of the method is particularly suited for forming such interconnects in microelectronics fabrications of the sub 0.15 micron generation.
摘要:
A method for forming dual-damascene type conducting interconnects with non-metallic barriers that protect said interconnects from fluorine out-diffusion from surrounding low-k, fluorinated dielectric materials. One embodiment of the method is particularly suited for forming such interconnects in microelectronics fabrications of the sub 0.15 micron generation.
摘要:
A method of forming amorphous silicon spacers followed by the forming of metal nitride over the spacers in a copper damascene structure -single, dual, or multi-structure- is disclosed in order to prevent the formation of fluorides in copper. In a first embodiment, the interconnection between the copper damascene and an underlying copper metal layer is made by forming an opening from the dual damascene structure to the underlying copper layer after the formation of the metal nitride layer over the amorphous silicon spacers formed on the inside walls of the dual damascene structure. In the second embodiment, the interconnection between the dual damascene structure and the underlying copper line is made from the dual damascene structure by etching into the underlying copper layer after the forming of the amorphous silicon spacers and before the forming of the metal nitride layer. In the third embodiment, the ternary metal silicon nitride spacer is formed by etching after having first formed the amorphous silicon layer and the nitride layer, in that order, and then etching the passivation/barrier layer at the bottom of the damascene structure into the underlying copper layer. In all three embodiments, metal nitride reacts with amorphous silicon to form a ternary metal silicon nitride having an excellent property of adhering to copper while at the same time for forming an excellent barrier to diffusion of copper.
摘要:
A semiconductor chip having an exposed metal terminating pad thereover, and a separate substrate having a corresponding exposed metal bump thereover are provided. A conducting polymer plug is formed over the exposed metal terminating pad. A conforming interface layer is formed over the conducting polymer plug. The conducting polymer plug of the semiconductor chip is aligned with the corresponding metal bump. The conforming interface layer over the conducting polymer plug is mated with the corresponding metal bump. The conforming interface layer is thermally decomposed, adhering and permanently attaching the conducting polymer plug with the corresponding metal bump. Methods of forming and patterning a nickel carbonyl layer are also disclosed.