摘要:
A memory-containing die includes a three-dimensional memory array, a memory dielectric material layer located on a first side of the three-dimensional memory array, and memory-side bonding pads. A logic die includes a peripheral circuitry configured to control operation of the three-dimensional memory array, logic dielectric material layers located on a first side of the peripheral circuitry, and logic-side bonding pads included in the logic dielectric material layers. The logic-side bonding pads includes a pad-level mesh structure electrically connected to a source power supply circuit within the peripheral circuitry and containing an array of discrete openings therethrough, and discrete logic-side bonding pads. The logic-side bonding pads are bonded to a respective one, or a respective subset, of the memory-side bonding pads. The pad-level mesh structure can be used as a component of a source power distribution network.
摘要:
A method for producing a structure by direct bonding of two elements, the method including: production of the elements to be assembled and assembly of the elements. The production of the elements to be assembled includes: deposition on a substrate of a TiN layer by physical vapor deposition, and deposition of a copper layer on the TiN layer. The assembly of the elements includes: polishing the surfaces of the copper layers intended to come into contact so that they have a roughness of less than 1 nm RMS and hydrophilic properties, bringing the surfaces into contact, and storing the structure at atmospheric pressure and at ambient temperature.
摘要:
The invention relates to a multilayer semiconductor integrated circuit device which is provided with a smaller space for a three-dimensional multilayer configuration at a lower cost and with a sufficient power supply quality. A first semiconductor integrated circuit device is provided with a first penetrating semiconductor region that penetrates through the first semiconductor body in the thickness direction and that is connected to the first power supply potential, and a second penetrating semiconductor region that penetrates through the first semiconductor body in the thickness direction and that is connected to the second power supply potential. A second semiconductor integrated circuit device having a first electrode and a second electrode is layered on top of the first semiconductor integrated circuit device so that the first electrode and the second electrode are respectively connected to the first penetrating semiconductor region and the second penetrating semiconductor region.
摘要:
A method of manufacturing a semiconductor device includes forming an opening in a first substrate and filling the opening with a metal to form a first connection electrode. The first substrate is then polished by chemical mechanical polishing under conditions such that a polishing rate of the metal is less that of the region surrounding the metal. The chemical mechanical polishing thereby causes the first connection electrode to protrude from the surface of the first substrate. The first substrate is stacked with a second substrate having a second connection electrode. The first and second connection electrodes are bonded by applying pressure and heating to a temperature that is below the melting point of the metal of the first connection electrode.
摘要:
A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 μm in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
摘要:
A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
摘要:
A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 microns in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
摘要:
A multi layered substrate structure can be formed where the substrates are coupled together using surface Coulomb forces. Connect substrates electrically connects signals and DC voltages between the substrates. The connect substrates bypass output/input buffers between two communicating substrates. The capacitor substrates provide a fully charged capacitor that provides additional energy to a levitated substrate if the capacitor substrate is connected to the levitated substrate. VLSI systems can also be build on each of the substrates.
摘要:
A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 μm in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.
摘要:
A Three-Dimensional Structure (3DS) Memory allows for physical separation of the memory circuits and the control logic circuit onto different layers such that each layer may be separately optimized. One control logic circuit suffices for several memory circuits, reducing cost. Fabrication of 3DS memory involves thinning of the memory circuit to less than 50 μm in thickness and bonding the circuit to a circuit stack while still in wafer substrate form. Fine-grain high density inter-layer vertical bus connections are used. The 3DS memory manufacturing method enables several performance and physical size efficiencies, and is implemented with established semiconductor processing techniques.