摘要:
An organic light-emitting display device includes a buffer layer on a substrate that has a plurality of insulating layers having different refractive indexes, and at least one of the insulating layers have different thicknesses on the same level. The device further includes an active layer of a thin film transistor in a thick area of the buffer layer, a pixel electrode in a thin area of the buffer layer, a gate electrode of the thin film transistor on the active layer and source and drain electrodes of the thin film transistor connected to the active layer, and a gate insulating layer between the gate electrode and the source and drain electrodes. The device also includes an emission layer on the pixel electrode, an opposite electrode facing the pixel electrode, and the emission layer is between the opposite electrode and the pixel electrode.
摘要:
An organic light emitting diode display including a substrate; a light blocking layer disposed on the substrate and having a semiconductor opening; a first semiconductor pattern disposed in the semiconductor opening; a gate insulating layer disposed on the light blocking layer and the first semiconductor pattern; a first gate electrode disposed on the gate insulating layer; a first source electrode electrically connected to the first semiconductor pattern; a first drain electrode spaced apart from the first source electrode; a protective insulating layer disposed on the first source electrode and the first drain electrode, the protective insulating layer having a contact portion; a pixel electrode disposed on the protective insulating layer contacting the first drain electrode through the contact portion; an emitting layer disposed on the pixel electrode; and a common electrode disposed on the emitting layer.
摘要:
An organic light emitting diode (OLED) display includes: a substrate; a semiconductor layer on the substrate; a gate insulating layer covering the semiconductor layer; a gate electrode formed in the gate insulating layer and overlapping the semiconductor layer; a pixel electrode formed in a pixel area over the gate insulating layer; an interlayer insulating layer covering the gate electrode and the gate insulating layer, and exposing the pixel electrode through a pixel opening; a source electrode and a drain electrode formed in the interlayer insulating layer and connected to the semiconductor layer; and a barrier rib covering the interlayer insulating layer, the source electrode, and the drain electrode, and the drain electrode contacts a side wall of the pixel opening and is connected to the pixel electrode. Such an OLED display may have an improved aperture ratio.
摘要:
An ion implanting system includes an ion generating system that generates ion beams and an ion implanting chamber in which a work-piece that is irradiated with the ion beams generated from the ion generating system is provided and into which the ion beams generated from the ion generating unit are directed. The ion generating system includes a first ion generating unit that irradiates ions to an upper portion of the work-piece and a second ion generating unit irradiating ions to a lower portion of the work-piece. The ion implanting system a can implant ions into a large work-piece through one ion implantation process with ion generating units arranged alternately with respect to each other in the transfer direction of the work-piece.
摘要:
A thin-film transistor array substrate is disclosed. In one embodiment, the transistor includes a capacitor including a lower electrode disposed on the same layer as an active layer and an upper electrode disposed on the same layer as a gate electrode. The transistor may also include a first insulating layer disposed between the active layer and the gate electrode and between the lower and upper electrodes, the first insulating layer not being disposed on a perimeter of the lower electrode. The transistor may further include a second insulating layer between the first insulating layer and the source and drain electrodes, the second insulating layer not being disposed on perimeters of the upper and lower electrodes.
摘要:
Making an OLED display, includes forming a first storage plate and a gate insulating layer covering the first storage plate on a substrate; sequentially forming a second storage plate covering the first storage plate and a capacitor intermediate in the gate insulating layer; forming a first doping region by injecting an impurity to a part that is not covered by the capacitor intermediate in the first storage plate; forming an interlayer insulating layer having a capacitor opening exposing the capacitor intermediate, and a plurality of erosion preventing layers on an edge of the capacitor intermediate toward the first doping region in the capacitor opening; removing the capacitor intermediate including the erosion preventing layer and a lower region of the erosion preventing layer, and injecting an impurity in the first storage plate through the second storage plate to form a second doping region contacting the first doping region.
摘要:
The present invention relates to an organic light emitting device and a manufacturing method thereof. A method of manufacturing an organic light emitting device according to an exemplary embodiment of the present invention includes: respectively forming first, second, and third driving transistors in a first region, a second region, and a third region on a substrate; forming an insulating layer on the first to third driving transistors; respectively forming first, second, and third pixel electrodes on the insulating layer, the first, second, and third pixel electrodes being formed in the first, second, and third regions, respectively; forming an auxiliary electrode on a side surface of each of the first, second, and third pixel electrodes; forming an organic light emitting member on the first to third pixel electrodes; and forming a common electrode on the organic light emitting member.
摘要:
A thin film transistor, a method of manufacturing the same, and a display device including the same, the thin film transistor including a substrate; a polysilicon semiconductor layer on the substrate; and a metal pattern between the semiconductor layer and the substrate, the metal pattern being insulated from the semiconductor layer, wherein the polysilicon of the semiconductor layer includes a grain boundary parallel to a crystallization growing direction, and a surface roughness of the polysilicon semiconductor layer defined by a distance between a lowest peak and a highest peak in a surface thereof is less than about 15 nm.
摘要:
A flat panel display device including a substrate including first and second regions; an active layer on the first region of the substrate including a semiconductor material; a lower electrode on the second region of the substrate including the semiconductor material; a first insulating layer on the substrate including the active layer and the lower electrode thereon; a gate electrode on the first insulating layer overlying the active layer and including a first conductive layer pattern and a second conductive layer pattern; an upper electrode on the first insulating layer overlying the lower electrode and including the first conductive layer pattern and the second conductive layer pattern; a second insulating layer on the gate electrode and the upper electrode exposing portions of the active layer and portions of the upper electrode; and a source electrode and a drain electrode connected to the exposed portions of the active layer.
摘要:
A flat panel display device and a method of manufacturing the flat panel display device are disclosed. In one embodiment, the flat panel display device includes: i) a first substrate, ii) an active layer formed over the first substrate, wherein the active layer comprises a source region, a drain region, and a channel region, iii) a gate insulating layer formed on the active layer, iv) a gate electrode formed on the gate insulating layer and over the channel region of the active layer and v) a first interlayer insulating film formed on the gate insulating layer and the gate electrode. The device may further includes 1) a source electrode and a drain electrode electrically connected to the source region and the drain region of the active layer, respectively, through a contact hole, wherein the contact hole is formed in the first interlayer insulating film and the gate insulating layer, 2) a second interlayer insulating film interposed substantially only between i) the first interlayer insulating film and ii) the source electrode and the drain electrode, 3) a passivation layer formed on the first interlayer insulating film and the source electrode and the drain electrode and 4) a pixel electrode electrically connected to the source electrode or the drain electrode through a via-hole formed in the passivation layer.