摘要:
Provided is a method for fabricating an interconnection line in a semiconductor device. The method includes forming a dielectric layer pattern including a region for forming the interconnection line on a semiconductor substrate, forming a diffusion barrier layer on the dielectric layer pattern, forming a first adhesion layer on the diffusion barrier layer, forming a seed layer on the first adhesion layer, forming a conductive layer to fill the region for forming the interconnection line, performing grain growth of the conductive layer by performing a first annealing process, planarizing the conductive layer to expose the top surface of the dielectric layer pattern, and forming an interface layer through reaction between the first adhesion layer and the conductive layer by performing a second annealing process at a temperature higher than that of the first annealing process.
摘要:
A metal interconnection of a semiconductor device, formed using a damascene process, has large grains and yet a smooth surface. First, a barrier layer and a metal layer are sequentially formed in an opening in an interlayer dielectric layer. A CMP process is carried out on the metal layer to form a metal interconnection remaining within the opening. Then, the metal interconnection is treated with plasma. The plasma treatment creates compressive stress in the metal interconnection, which stress produces hillocks at the surface of the metal interconnection. In addition, the plasma treatment process causes grains of the metal to grow, especially when the design rule is small, to thereby decrease the resistivity of the metal interconnection. The hillocks are then removed by a CMP process aimed at polishing the portion of the barrier layer that extends over the upper surface of the interlayer dielectric layer. Finally, a capping insulating layer is formed. The intentional forming of hillocks by the plasma treatment process at weak portions of the metal interconnection and the subsequent removal of the hillocks greatly reduces the possibility of any additional hillocks being produced at the surface of the metal interconnection, especially when the capping layer is formed.
摘要:
A metal interconnection of a semiconductor device, formed using a damascene process, has large grains and yet a smooth surface. First, a barrier layer and a metal layer are sequentially formed in an opening in an interlayer dielectric layer. A CMP process is carried out on the metal layer to form a metal interconnection remaining within the opening. Then, the metal interconnection is treated with plasma. The plasma treatment creates compressive stress in the metal interconnection, which stress produces hillocks at the surface of the metal interconnection. In addition, the plasma treatment process causes grains of the metal to grow, especially when the design rule is small, to thereby decrease the resistivity of the metal interconnection. The hillocks are then removed by a CMP process aimed at polishing the portion of the barrier layer that extends over the upper surface of the interlayer dielectric layer. Finally, a capping insulating layer is formed. The intentional forming of hillocks by the plasma treatment process at weak portions of the metal interconnection and the subsequent removal of the hillocks greatly reduces the possibility of any additional hillocks being produced at the surface of the metal interconnection, especially when the capping layer is formed.
摘要:
A semiconductor device that prevents gate spacer stress and physical and chemical damages on a silicide region, and a method of manufacturing the same, according to an exemplary embodiment of the present invention, includes a substrate, isolation regions formed in the substrate, a gate pattern formed between the isolation regions on the substrate, an L-type spacer adjacent to the sidewall of the gate pattern and extended to the surface of the substrate, source/drain silicide regions formed on the substrate between the end of the L-type spacer extended to the surface of the substrate and the isolation regions, via plugs electrically connected with the source/drain silicide regions, an interlayer dielectric layer which is adjacent to the L-type spacer and which fills the space between the via plugs layer formed on the gate pattern and the substrate, and a signal-transfer line formed on the interlayer dielectric layer.
摘要:
A method of fabricating a semiconductor device and a semiconductor device fabricated thereby. The method of fabricating the semiconductor device includes forming gate electrodes on a semiconductor substrate; forming source/drain regions within the semiconductor substrate so as to be located at both sides of each of the gate electrodes; forming a nickel silicide layer on surfaces of the gate electrodes and the source/drain regions by evaporating nickel or nickel alloy on the semiconductor substrate formed with the gate electrodes and the source/drain regions and then performing a thermal process on the nickel or the nickel alloy; forming an interlayer insulating layer, which is formed with contact holes through which a surface of the nickel silicide layer is exposed, on a surface obtained after the above processes have been performed; forming an ohmic layer by evaporating a refractory metal conformably along the contact holes, the refractory metal being converted to silicide at a temperature of 500° C. or more; forming a diffusion barrier on the ohmic layer conformably along the contact holes; and forming a metal layer by burying a metal material within the contact holes.
摘要:
A method for removing an oxide layer such as a natural oxide layer and a semiconductor manufacturing apparatus which uses the method to remove the oxide layer. A vertically movable susceptor is installed at the lower portion in a processing chamber and a silicon wafer is loaded onto the susceptor when it is at the lower portion of the processing chamber. The air is exhausted from the processing chamber to form a vacuum condition therein. A hydrogen gas in a plasma state and a fluorine-containing gas are supplied into the processing chamber to induce a chemical reaction with the oxide layer on the silicon wafer, resulting in a reaction layer. Then, the susceptor is moved up to the upper portion of the processing chamber, to anneal the silicon wafer on the susceptor with a heater installed at the upper portion of the processing chamber, thus vaporizing the reaction layer. The vaporized reaction layer is exhausted out of the chamber. The oxide layer can be removed with a high selectivity while avoiding damage or contamination of the underlying layer.
摘要:
A copper-plating electrolyte includes an aqueous copper salt solution, a water-soluble &bgr;-naphtholethoxylate compound having the formula wherein n is an integer from 10 to 24, one selected from the group consisting of a disulfide having the formula XO3S(CH2)3SS(CH2)3SOX3 and a water-soluble mercaptopropanesulfonic acid or salt thereof having the formula HS(CH2)3SO3X, where X is sodium, potassium, or hydrogen, a water-soluble polyethylene glycol having a molecular weight ranging from about 4,600 to about 10,000, and a water-soluble polyvinylpyrrolidone having a molecular weight ranging from about 10,000 to about 1,300,000.
摘要:
A method of forming a wiring layer of a semiconductor device, includes forming a first interlayer insulating layer to have a first thickness corresponding to a part of the thickness of an interlayer insulating layer that is to be formed on a support layer and forming a first contact plug in the first interlayer insulating layer. The method further includes forming a second interlayer insulating layer to have a second thickness on the first contact plug and the first interlayer insulating layer, thereby forming the interlayer insulating layer, wherein the second thickness corresponds to the rest of the thickness of the interlayer insulating layer, and forming a second contact plug connected to the first contact plug in the second interlayer insulating layer, thereby forming a local wiring layer including the first contact plug and the second contact plug.
摘要:
A method for removing an oxide layer such as a natural oxide layer and a semiconductor manufacturing apparatus which uses the method to remove the oxide layer. A vertically movable susceptor is installed at the lower portion in a processing chamber and a silicon wafer is loaded onto the susceptor when it is at the lower portion of the processing chamber. The air is exhausted from the processing chamber to form a vacuum condition therein. A hydrogen gas in a plasma state and a fluorine-containing gas are supplied into the processing chamber to induce a chemical reaction with the oxide layer on the silicon wafer, resulting in a reaction layer. Then, the susceptor is moved up to the upper portion of the processing chamber, to anneal the silicon wafer on the susceptor with a heater installed at the upper portion of the processing chamber, thus vaporizing the reaction layer. The vaporized reaction layer is exhausted out of the chamber. The oxide layer can be removed with a high selectivity while avoiding damage or contamination of the underlying layer.