摘要:
The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.
摘要:
The present invention is a novel method for freeform fabrication. Specifically, the method of solid freeform fabrication has the steps of: (a) preparing a slurry by mixing powder particles with a suspension medium and a gelling polysaccharide; (b) making a layer by depositing an amount of said powder slurry in a confined region; (c) hardening a selected portion of the layer by applying a gelling agent to the selected portion; and (d) repeating steps (b) and (c) to make successive layers and forming a layered object. In many applications, it is desirable to remove unhardened material followed by heating to remove gellable polysaccharide then sintering.
摘要:
A non-thermal plasma reactor element is provided comprising a multi-cell stack prepared from a plurality of formed building blocks of dielectric material, the walls of the building blocks defining a cell having an exhaust passage for flowing gas to be treated therethrough. A conductive print forming an electrode and connector is disposed on at least one wall of each of the cells and outer insulative plates, disposed on opposite ends of the multi-cell stack, are provided to protect the conductive print. The non-thermal plasma reactor element includes cells defined by a single structural dielectric barrier comprising a “conductor-single structural dielectric barrier-exhaust passage-conductor” arrangement, wherein individual cells of the reactor element are defined by a single structural dielectric barrier.
摘要:
Porous ceramic and hybrid ceramic films are useful as low dielectric constant interlayers in semiconductor interconnects. (Hybrid ceramic films are defined as films that contain organic and ceramic molecular components in the structure, as, for example, organosilicates). This invention describes the usefulness of humidity treatments (using specific temperature/humidity treatments as illustrative examples) in increasing mechanical integrity of porous dielectric films with minimal detrimental effect on film porosity or dielectric constant and with no adverse impact on film quality. The efficacy of such treatments is illustrated using surfactant-templated mesoporous silicate films as an example. This invention also describes a specific family of additives to be used with highly pure alkali-metal-free ceramic and hybrid precursors for such dielectric films that will enable better control of the film porosity and quality and lower dielectric constants with the required mechanical integrity. The efficacy of such additives is illustrated using surfactant-templated mesoporous silicate films as a model example. The invention should be broadly applicable to any cross-linked ceramic or hybrid ceramic films (including silicate and organosilicate films, and especially highly porous forms of the films for low-dielectric constant applications). The invention has been found to be particularly effective with surfactant-templated silicate films with nanometer-scale porosity. The invention in either embodiment should also be applicable to evaporation-induced formation of other cross-linked shapes such as fibers and powders.
摘要:
Porous ceramic and hybrid ceramic films are useful as low dielectric constant interlayers in semiconductor interconnects. (Hybrid ceramic films are defined as films that contain organic and ceramic molecular components in the structure, as, for example, organosilicates). This invention describes the usefulness of humidity treatments (using specific temperature/humidity treatments as illustrative examples) in increasing mechanical integrity of porous dielectric films with minimal detrimental effect on film porosity or dielectric constant and with no adverse impact on film quality. The efficacy of such treatments is illustrated using surfactant-templated mesoporous silicate films as an example. This invention also describes a specific family of additives to be used with highly pure alkali-metal-free ceramic and hybrid precursors for such dielectric films that will enable better control of the film porosity and quality and lower dielectric constants with the required mechanical integrity. The efficacy of such additives is illustrated using surfactant-templated mesoporous silicate films as a model example. The invention should be broadly applicable to any cross-linked ceramic or hybrid ceramic films (including silicate and organosilicate films, and especially highly porous forms of the films for low-dielectric constant applications). The invention has been found to be particularly effective with surfactant-templated silicate films with nanometer-scale porosity. The invention in either embodiment should also be applicable to evaporation-induced formation of other cross-linked shapes such as fibers and powders.
摘要:
Vacuum/gas phase reactor embodiments used in gas phase dehydroxylation and alkylation reactions are described in which the substrate could be subjected to high vacuum, heated to target temperature, and treated with silane as quickly and efficiently as possible. To better facilitate the silylation and to increase the efficiency of the process, the reactor is designed to contain quasi-catalytic surfaces which can act both as an “activator” to put species in a higher energy state or a highly activated state, and as a “scrubber” to eliminate possible poisons or reactive by-products generated in the silylation reactions. One described embodiment is a hot filament reactor having hot, preferably metallic, solid surfaces within the reactor's chamber in which wafers having mesoporous silicate films are treated. Another is an IR reactor having upper and lower quartz windows sealing the upper and lower periphery of an aluminum annulus to form a heated chamber. Finally, a flange reactor is described that includes a flange base and lid forming a tiny chamber therein for a wafer, the reactor being heated by conduction from a hot sand bath. The dehydroxylation and alkylation treatment of mesoporous silica films produces treated films exhibiting low dielectric constant and high elastic modulus.
摘要:
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).
摘要:
Disclosed herein is a ceramic part, gas sensor, and method for making the gas sensor. The ceramic part comprises: an insulating layer affixed to a substrate wherein the insulating layer comprising Al2O3 particles; and a glass comprising about 45 to about 69 mole percent SiO2, 0 to about 9 mole percent B2O3, 0 to about 26 mole percent Al2O3, 0 and 25 mole percent SrO, and about 10 to about 26 mole percent RE2O3, where RE2O3 is selected from the group consisting of Y2O3, three valent rare earth oxides, and combinations comprising at least one of the foregoing.In one embodiment of a ceramic part, a gas sensor comprises: an electrolyte layer having disposed on opposite sides thereof a first electrode and a second electrode; and an insulating layer that is in intimate contact with the second electrode, wherein the insulating layer comprises alumina and frit.The method of making the gas sensor comprises: disposing a first electrode and a second electrode on opposite sides of an electrolyte layer; forming an insulating layer comprising alumina and frit; disposing the insulating layer adjacent to the second electrode to form a green sensor; and heating the green sensor to a temperature sufficient to sinter the electrolyte layer and the insulating layer.
摘要翻译:这里公开了一种用于制造气体传感器的陶瓷部件,气体传感器和方法。 陶瓷部件包括:固定在基板上的绝缘层,其中包含Al 2 O 3颗粒的绝缘层; 和包含约45至约69摩尔%的SiO 2,0至约9摩尔%的B 2 O 3 3,0至约26的玻璃 摩尔百分比的Al 2 O 3,0和25摩尔%的SrO和约10至约26摩尔%的RE 2 O 3 其中RE 2 2 O 3 3选自Y 2 O 3,N 3, 三价稀土氧化物,以及包含前述的至少一种的组合。 在陶瓷部件的一个实施例中,气体传感器包括:电解质层,其在其相对侧上设置有第一电极和第二电极; 以及与所述第二电极紧密接触的绝缘层,其中所述绝缘层包括氧化铝和玻璃料。 制造气体传感器的方法包括:在电解质层的相对侧上设置第一电极和第二电极; 形成包含氧化铝和玻璃料的绝缘层; 将所述绝缘层设置成与所述第二电极相邻以形成绿色传感器; 并将绿色传感器加热到足以烧结电解质层和绝缘层的温度。
摘要:
The present invention is a mesoporous silica film having a low dielectric constant and method of making having the steps of combining a surfactant in a silica precursor solution, spin-coating a film from this solution mixture, forming a partially hydroxylated mesoporous film, and dehydroxylating the hydroxylated film to obtain the mesoporous film. It is advantageous that the small polyoxyethylene ether surfactants used in spin-coated films as described in the present invention will result in fine pores smaller on average than about 20 nm. The resulting mesoporous film has a dielectric constant less than 3, which is stable in moist air with a specific humidity. The present invention provides a method for superior control of film thickness and thickness uniformity over a coated wafer, and films with low dielectric constant.
摘要:
This invention pertains to surfactant-templated nanometer-scale porosity of a silica precursor solution and forming a mesoporous material by first forming the silica precursor solution into a preform having a high surface area to volume ratio, then rapid drying or evaporating a solvent from the silica precursor solution. The mesoporous material may be in any geometric form, but is preferably in the form of a film, fiber, powder or combinations thereof. The rapid drying or evaporation of solvent from the solution is accomplished by layer thinning, for example spin casting, liquid drawing, and liquid spraying respectively. Production of a film is by layer thinning, wherein a layer of the silica precursor solution is formed on a surface followed by removal of an amount of the silica precursor solution and leaving a geometrically thinner layer of the silica precursor solution from which the solvent quickly escapes via evaporation. Layer thinning may be by any method including but not limited to squeegeeing and/or spin casting. In powder formation by spray drying, the same conditions of fast drying exists as in spin-casting (as well as in fiber spinning) because of the high surface-area to volume ratio of the product. When a powder is produced by liquid spraying, the particles or micro-bubbles within the powder are hollow spheres with walls composed of mesoporous silica. Mesoporous fiber formation starts with a similar silica precursor solution but with an added pre-polymer making a pituitous mixture that is drawn into a thin strand from which solvent is evaporated leaving the mesoporous fiber(s).