Abstract:
In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a first integrated chip (IC) tier and a second IC tier. The second IC tier comprises a second plurality of conductors within a second insulating structure disposed on the second semiconductor body. A conductive pad is electrically coupled to the second plurality of conductors and has a conductive surface available to a side of the second semiconductor body facing away from the first semiconductor body. The IC first tier contacts the second IC tier along a bonding interface including one or more conductive regions and one or more insulating regions. The one or more conductive regions laterally outside of a bottom surface of the conductive pad.
Abstract:
Various embodiments of the present disclosure are directed towards an image sensor including a first integrated circuit (IC) die stacked with a second IC die. The first IC die includes a plurality of photodetectors disposed within a first substrate. The second IC die includes a plurality of pixel transistors and a semiconductor capacitor disposed on a second substrate. The semiconductor capacitor includes a first capacitor electrode, a capacitor dielectric layer, and a doped capacitor region. The first capacitor electrode overlies the second substrate and comprises a protrusion disposed in the second substrate. The capacitor dielectric layer is disposed between the first capacitor electrode and the second substrate. The doped capacitor region is disposed within the second substrate and underlies the first capacitor electrode. The plurality of photodetectors, the plurality of pixel transistors, and the semiconductor capacitor define a pixel.
Abstract:
In some embodiments, the present disclosure relates to an integrated chip structure. The integrated chip structure includes a first integrated chip (IC) tier and a second IC tier. The second IC tier comprises a second plurality of conductors within a second insulating structure disposed on the second semiconductor body. A conductive pad is electrically coupled to the second plurality of conductors and has a conductive surface available to a side of the second semiconductor body facing away from the first semiconductor body. The IC first tier contacts the second IC tier along a bonding interface including one or more conductive regions and one or more insulating regions. The one or more conductive regions laterally outside of a bottom surface of the conductive pad.
Abstract:
A semiconductor device comprises a first chip bonded on a second chip. The first chip comprises a first substrate and first interconnection components formed in first IMD layers. The second chip comprises a second substrate and second interconnection components formed in second IMD layers. The device further comprises a first conductive plug formed within the first substrate and the first IMD layers, wherein the first conductive plug is coupled to a first interconnection component and a second conductive plug formed through the first substrate and the first IMD layers and formed partially through the second IMD layers, wherein the second conductive plug is coupled to a second interconnection component.
Abstract:
An image sensor structure that includes a first semiconductor substrate having a plurality of imaging sensors; a first interconnect structure formed on the first semiconductor substrate; a second semiconductor substrate having a logic circuit; a second interconnect structure formed on the second semiconductor substrate, wherein the first and the second semiconductor substrates are bonded together in a configuration that the first and second interconnect structures are sandwiched between the first and second semiconductor substrates; and a backside deep contact (BDCT) feature extended from the first interconnect structure to the second interconnect structure, thereby electrically coupling the logic circuit to the image sensors.
Abstract:
A semiconductor device comprises a first chip bonded on a second chip. The first chip comprises a first substrate and first interconnection components formed in first IMD layers. The second chip comprises a second substrate and second interconnection components formed in second IMD layers. The device further comprises a first conductive plug formed within the first substrate and the first IMD layers, wherein the first conductive plug is coupled to a first interconnection component and a second conductive plug formed through the first substrate and the first IMD layers and formed partially through the second IMD layers, wherein the second conductive plug is coupled to a second interconnection component.
Abstract:
A back side image sensor and method of manufacture are provided. In an embodiment a bottom anti-reflective coating is formed over a substrate, and a metal shield layer is formed over the bottom anti-reflective coating. The metal shield layer is patterned to form a grid pattern over a sensor array region of the substrate, and a first dielectric layer and a second dielectric layer are formed to at least partially fill in openings within the grid pattern.
Abstract:
A back side image sensor and method of manufacture are provided. In an embodiment a bottom anti-reflective coating is formed over a substrate, and a metal shield layer is formed over the bottom anti-reflective coating. The metal shield layer is patterned to form a grid pattern over a sensor array region of the substrate, and a first dielectric layer and a second dielectric layer are formed to at least partially fill in openings within the grid pattern.
Abstract:
Semiconductor devices, methods of manufacturing thereof, and image sensor devices are disclosed. In some embodiments, a semiconductor device includes a semiconductor chip comprising an array region, a periphery region, and a through-via disposed therein. A guard structure is disposed in the semiconductor chip between the array region and the through-via or between the through-via and a portion of the periphery region. A portion of the guard structure is disposed within a substrate of the semiconductor chip.
Abstract:
A method and apparatus for a low resistance image sensor contact, the apparatus comprising a photosensor disposed in a substrate, a first ground well disposed in a first region of the substrate, the first ground well having a resistance lower than the substrate, and a ground line disposed in a region adjacent to the first ground well. The first ground well is configured to provide a low resistance path to the ground line from the substrate for excess free carriers in the first region of the substrate. The apparatus may optionally comprise a second ground well having a lower resistance than the first ground well and disposed between the first ground well and the ground line, and may further optionally comprise a third ground well having a lower resistance than the second ground well and disposed between the second ground well and the ground line.