Abstract:
An apparatus and method for processing a workpiece with a beam is described. The apparatus includes a vacuum chamber having a beam-line for forming a particle beam and treating a workpiece with the particle beam, and a scanner for translating the workpiece through the particle beam. The apparatus further includes a scanner control circuit coupled to the scanner, and configured to control a scan property of the scanner, and a beam control circuit coupled to at least one beam-line component, and configured to control the beam flux of the particle beam according to a duty cycle for switching between at least two different states during processing.
Abstract:
An apparatus and method for processing a workpiece with a beam is described. The apparatus includes a vacuum chamber having a beam-line for forming a particle beam and treating a workpiece with the particle beam, and a scanner for translating the workpiece through the particle beam. The apparatus further includes a scanner control circuit coupled to the scanner, and configured to control a scan property of the scanner, and a beam control circuit coupled to at least one beam-line component, and configured to control the beam flux of the particle beam according to a duty cycle for switching between at least two different states during processing.
Abstract:
A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the GCIB etch processing includes setting one or more GCIB properties of a GCIB process condition for the GCIB to achieve one or more target etch process metrics.
Abstract:
A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials are described. In particular, the GCIB etch processing includes setting one or more GCIB properties of a GCIB process condition for the GCIB to achieve one or more target etch process metrics. Furthermore, the GCIB is formed from a pressurized gas mixture containing at least one etch compound and at least one additional gas, wherein the concentration of the at least one etch compound in the GCIB exceeds 5 at % of the pressurized gas mixture.
Abstract:
A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the GCIB etch processing includes setting one or more GCIB properties of a GCIB process condition for the GCIB to achieve one or more target etch process metrics. Furthermore, the GCIB etch processing utilizes Si-containing and/or Ge-containing etchants. Further yet, the GCIB etch processing facilitates etching Si-containing material, Ge-containing material, and metal-containing material.
Abstract:
An apparatus and method for processing a workpiece with a beam is described. The apparatus includes a vacuum chamber having a beam-line for forming a particle beam and treating a workpiece with the particle beam, and a scanner for translating the workpiece through the particle beam. The apparatus further includes a scanner control circuit coupled to the scanner, and configured to control a scan property of the scanner, and a beam control circuit coupled to at least one beam-line component, and configured to control the beam flux of the particle beam according to a duty cycle for switching between at least two different states during processing.
Abstract:
A method and system for performing gas cluster ion beam (GCIB) etch processing of various materials is described. In particular, the GCIB etch processing includes setting one or more GCIB properties of a GCIB process condition for the GCIB to achieve one or more target etch process metrics. Furthermore, the GCIB etch processing utilizes Si-containing and/or Ge-containing etchants. Further yet, the GCIB etch processing facilitates etching Si-containing material, Ge-containing material, and metal-containing material.