Abstract:
Information communication circuitry, including a first integrated circuit for coupling to a second integrated circuit in a package on package configuration. The first integrated circuit comprises processing circuitry for communicating information bits, and the information bits comprise data bits and error correction bits, where the error correction bits are for indicating whether data bits are received correctly. The second integrated circuit comprises a memory for receiving and storing at least some of the information bits. The information communication circuitry also includes interfacing circuitry for selectively communicating, along a number of conductors, between the package on package configuration. In a first instance, the interfacing circuitry selectively communicates only data bits along the number of conductors. In a second instance, the interfacing circuitry selectively communicates data bits along a first set of the number of conductors and error correction bits along a second set of the number of conductors.
Abstract:
Information communication circuitry, including a first integrated circuit for coupling to a second integrated circuit in a package on package configuration. The first integrated circuit comprises processing circuitry for communicating information bits, and the information bits comprise data bits and error correction bits, where the error correction bits are for indicating whether data bits are received correctly. The second integrated circuit comprises a memory for receiving and storing at least some of the information bits. The information communication circuitry also includes interfacing circuitry for selectively communicating, along a number of conductors, between the package on package configuration. In a first instance, the interfacing circuitry selectively communicates only data bits along the number of conductors. In a second instance, the interfacing circuitry selectively communicates data bits along a first set of the number of conductors and error correction bits along a second set of the number of conductors.
Abstract:
An integrated circuit (IC) chip can include a given core at a position in the IC chip that defines a given orientation, wherein the given core is designed to perform a particular function. The IC chip can include another core designed to perform the particular function. The other core can be flipped and rotated by 180 degrees relative to the given core such that the other core is asymmetrically oriented with respect to the given core. The IC chip can also include a compare unit configured to compare outputs of the given core and the other core to detect a fault in the IC chip.
Abstract:
A method for testing an imaging subsystem of a system-on-a-chip (SOC) is provided that includes executing imaging subsystem test software instructions periodically on a processor of the SOC, receiving reference image data in the imaging subsystem responsive to the executing of the test software instructions, performing image signal processing on the reference image data by the imaging subsystem to generate processed reference image data, and using the processed reference image data by the test software instructions to verify whether or not the imaging subsystem is operating correctly.
Abstract:
Information communication circuitry, including a first integrated circuit for coupling to a second integrated circuit in a package on package configuration. The first integrated circuit comprises processing circuitry for communicating information bits, and the information bits comprise data bits and error correction bits, where the error correction bits are for indicating whether data bits are received correctly. The second integrated circuit comprises a memory for receiving and storing at least some of the information bits. The information communication circuitry also includes interfacing circuitry for selectively communicating, along a number of conductors, between the package on package configuration. In a first instance, the interfacing circuitry selectively communicates only data bits along the number of conductors. In a second instance, the interfacing circuitry selectively communicates data bits along a first set of the number of conductors and error correction bits along a second set of the number of conductors.
Abstract:
An integrated circuit (IC) chip can include a given core at a position in the IC chip that defines a given orientation, wherein the given core is designed to perform a particular function. The IC chip can include another core designed to perform the particular function. The other core can be flipped and rotated by 180 degrees relative to the given core such that the other core is asymmetrically oriented with respect to the given core. The IC chip can also include a compare unit configured to compare outputs of the given core and the other core to detect a fault in the IC chip.
Abstract:
Information communication circuitry, including a first integrated circuit for coupling to a second integrated circuit in a package on package configuration. The first integrated circuit comprises processing circuitry for communicating information bits, and the information bits comprise data bits and error correction bits, where the error correction bits are for indicating whether data bits are received correctly. The second integrated circuit comprises a memory for receiving and storing at least some of the information bits. The information communication circuitry also includes interfacing circuitry for selectively communicating, along a number of conductors, between the package on package configuration. In a first instance, the interfacing circuitry selectively communicates only data bits along the number of conductors. In a second instance, the interfacing circuitry selectively communicates data bits along a first set of the number of conductors and error correction bits along a second set of the number of conductors.
Abstract:
A method for testing an imaging subsystem of a system-on-a-chip (SOC) is provided that includes executing imaging subsystem test software instructions periodically on a processor of the SOC, receiving reference image data in the imaging subsystem responsive to the executing of the test software instructions, performing image signal processing on the reference image data by the imaging subsystem to generate processed reference image data, and using the processed reference image data by the test software instructions to verify whether or not the imaging subsystem is operating correctly.
Abstract:
A system includes first and second processing components, a qualified based splitter component, a first and second configurable cache element and an arbiter component. The first data processing component generates a first request for a first portion of data at a first location within a memory. The second data processing component generates a second request for a second portion of data at a second location within the memory. The qualifier based splitter component routes the first request and the second request based on a qualifier. The first configurable cache element enables or disables prefetching data within a first region of the memory. The second configurable cache element enables or disables prefetching data within a second region of the memory. The arbiter component routes the first request and the second request to the memory.
Abstract:
Information communication circuitry, including a first integrated circuit for coupling to a second integrated circuit in a package on package configuration. The first integrated circuit comprises processing circuitry for communicating information bits, and the information bits comprise data bits and error correction bits, where the error correction bits are for indicating whether data bits are received correctly. The second integrated circuit comprises a memory for receiving and storing at least some of the information bits. The information communication circuitry also includes interfacing circuitry for selectively communicating, along a number of conductors, between the package on package configuration. In a first instance, the interfacing circuitry selectively communicates only data bits along the number of conductors. In a second instance, the interfacing circuitry selectively communicates data bits along a first set of the number of conductors and error correction bits along a second set of the number of conductors.