Abstract:
A visual obscurant system for obscuring object from an observer having a field of view (FOV) is disclosed. The system comprises a sensor for detecting characteristics that indicate a presence of the object, a light source for emitting light in an electromagnetic spectrum, a source, and a controller. The source releases an obscurant into atmosphere to create a cloud. The obscurant attenuates a portion of the electromagnetic spectrum. The cloud is positioned within the FOV of the observer so as to obscure the object when the light emitted from the light source is directed towards the cloud. The controller is in communication with at least the sensor and the source. The controller modulates the light source at a frequency sufficient such that the observer interprets the light as being constant when energized.
Abstract:
Methods and apparatus for reducing the occurrence of metal whiskers on surfaces are disclosed herein. In particular, the present disclosure teaches providing at least one source of electromagnetic energy to emit energy to reduce the occurrence of metal whiskers on a surface.
Abstract:
A neutron generator includes a fuel source configured to provide a neutron-producing fuel. The neutron generator includes a plasma confinement device coupled to the fuel source and configured to generate a z-pinch of the neutron-producing fuel.
Abstract:
The present disclosure relates to the active initiation of incident energy-dissipating material from a structure surface coating as a counter measure response for the protection of a structure surface. The active initiation is triggered at a predetermined area or areas on a targeted structure surface in response to incident directed energy sensed on a target surface.
Abstract:
A nondestructive bond strength testing method, including: coupling an expendable device to a structure under test, the expendable device including a patterned planar array of exploding bridge wires; simultaneously vaporizing the patterned planar array of exploding bridge wires by applying a pulse of electrical energy to the patterned planar array of exploding bridge wires; and sensing an initial disbonding signature of the structure under test.
Abstract:
Methods, devices, and systems may protect a target from undesirable electromagnetic radiation by detecting electromagnetic radiation (including coherent radiation such as laser beams) aimed at a target from a source; calculating a first release position to disrupt the electromagnetic radiation thereby protecting the target; launching a projectile that may include a disruptive medium or a disruptive-medium precursor; directing the projectile to the first release position; and releasing the disruptive medium from the projectile at the first release position, such that the releasing of the disruptive medium forms a cloud of the disruptive medium.
Abstract:
A computer-implemented method for protecting a vehicle from a directed energy attack is provided. The method includes receiving, at the vehicle, a beam of directed energy, determining a threat level of the beam of directed energy, and causing the vehicle to automatically execute at least one evasive maneuver when the threat level of the beam of directed energy is greater than a predetermined threshold.
Abstract:
Electromagnetic radiation scanning is used to monitor the integrity of a composite laminate structure. The laminate is designed to be optically resonant at the frequency of the radiation, allowing the inconsistencies in the laminate to be detected and mapped.
Abstract:
In an example, an apparatus includes a cryogenic container configured to store a cryogenic fluid, a superconducting coil disposed within the cryogenic container, and an outer casing surrounding at least a lateral surface area of the cryogenic container. The apparatus is configured such that, while the superconducting coil is carrying a current, is in a superconducting state, and is being cooled by the cryogenic fluid stored in the cryogenic container, an outward magnetic pressure is imposed on the cryogenic container and the outer casing. The cryogenic container and the outer casing are configured to withstand the outward magnetic pressure for at least a predetermined period of time, including while the superconducting coil is being charged to the superconducting state. An occurrence of a trigger event while the outward magnetic pressure is being imposed causes the cryogenic container and the outer casing to expand and burst into radially-dispersed fragments.
Abstract:
The present disclosure relates to the active initiation of incident energy-dissipating material from a structure surface coating as a counter measure response for the protection of a structure surface. The active initiation is triggered at a predetermined area or areas on a targeted structure surface in response to incident directed energy sensed on a target surface.