Abstract:
An amplifier is presented with a sample and average common mode feedback resistor. The amplifier circuit includes a feedback capacitor and a feedback resistor in parallel with the feedback capacitor, where the feedback capacitor and the feedback resistor form part of the negative feedback path for the amplifier. Of note, the feedback resistor is comprised of a low pass filter in series with a switched capacitor resistor, such that the low pass filter is electrically coupled to the output of the amplifier circuit and the switched capacitor resistor is electrically coupled to the inverting input of the amplifier circuit. The amplifier circuit further includes a control circuit interfaced with switches of the switched capacitor resistor. The high pass corner of the switched capacitor resistor is preferably lower than corner of the low pass filter.
Abstract:
A system is presented for non-line-of-sight localization between RF enabled devices. A transmitting node is configured to transmit an RF ranging signal at a first carrier frequency, where the RF ranging signal is modulated with a symbol. The reflecting node is configured to receive the RF ranging signal and further operates to convert the RF ranging signal to a second carrier frequency and retransmit the converted ranging signal while simultaneously receiving the RF ranging signal. The localizing node is configured to receive the converted ranging signal from the reflecting node. The localizing node operates to identify, in frequency domain, the symbol in the converted ranging signal and compute a distance between the reflecting node and the localizing node based in part on the identified symbol in the converted ranging signal. The transmitting node and the localizing node may be on the same or different devices.
Abstract:
An environmental sensor implementing a sleep mode timer with an oscillator circuit suitable for low power applications is presented. The oscillator circuit includes a plurality of timer stages cascaded in series with each other. Each timer circuit includes a plurality of transistors and operates to output two voltages with opposite polarities, such that the polarities of the two voltages oscillate periodically based on leakage current in the plurality of transistors. Each timer circuit further includes one or more tuning transistors that operate to adjust a frequency at which the polarities of the voltages oscillate. A complementary-to-absolute temperature (“CTAT”) voltage generator is configured to receive a regulated voltage and supply a bias voltage to the one or more tuning transistors in each of the plurality of timer circuits, where the CTAT voltage generator adjusts the bias voltage linearly and inversely with changes in temperature.
Abstract:
A method is presented for aligning a read with a reference substring of a genome sequence. The method includes: receiving a banded portion of a matrix from a sequence alignment algorithm; calculating a score threshold for the banded portion of the matrix, where value of the score threshold is calculated as a function of a scoring method used by the sequence alignment algorithm; identifying a high score amongst the cells in the banded portion of the matrix; and comparing the high score to the score threshold. Performing variant calling using the banded portion of the matrix when the high score is greater than to the score threshold. Computing alignment scores for a larger portion of the matrix using the sequence alignment algorithm when the high score is less than or equal to the score threshold.
Abstract:
A matched filter is provided for signal processing applications such as GNSS and RADAR. The filter includes a plurality of correlator cells configured to receive a digital signal and are arranged so that values of the digital signal can be shifted amongst the plurality of correlator cells. Each correlator cell includes a correlator circuit, a data source and a current source. The correlator circuit is configured to receive a value from the digital signal and operates to correlate the value with a value of the known pattern stored in the data store. The current source is interfaced with the correlator circuit and selectively sources current based on the correlation operation performed by the correlator circuit; and an output circuit is coupled to each of the plurality of correlator cell and operates to generate an output which is correlated to current that is being source collectively by the current sources.
Abstract:
A mote includes an optical receiver that wirelessly receives a power and data signal in form of NIR light energy within a patient and converts the NIR light energy to an electrical signal having a supply voltage. A control module supplies the supply voltage to power devices of the mote. A clock generation circuit locks onto a target clock frequency based on the power and data signal and generates clock signals. A data recovery circuit sets parameters of one of the devices based on the power and data signal and a first clock signal. An amplifier amplifies a neuron signal detected via an electrode inserted in tissue of the patient. A chip identifier module, based on a second clock signal, generates a recorded data signal based on a mote chip identifier and the neuron signal. A driver transmits the recorded data signal via a LED or a RF transmitter.
Abstract:
A method is presented for aligning a read with a haplotype. The method includes: constructing an overall matrix for computing alignment probabilities between a given read and a given haplotype, calculating, during a first pass, an alignment probability for each cell in the overall matrix using Pair-HMM method, where the alignment probabilities are calculated using fixed-point arithmetic; pruning cells from the overall matrix to derive a subset of unpruned cells; and calculating, during a second pass, an alignment probability for each cell in the subset of unpruned cells using the Pair-HMM method, where the alignment probabilities are calculated using floating-point arithmetic.
Abstract:
A self-oscillating DC-DC converter structure is proposed in which an oscillator is completely internalized within the switched-capacitor network. This eliminates power overhead of clock generation and level shifting and enables higher efficiency at lower power levels. Voltage doublers are cascaded to form a complete energy harvester with a wide load range from 5 nW to 5 μW and self-starting operation down to 140 mV. Because each doubler is self-oscillating, the frequency of each stage can be independently modulated, thereby optimizing the overall conversion efficiency.
Abstract:
When the ultra-low power mm-scale sensor node does not have a crystal oscillator and phase-lock loop, it inevitably exhibits significant carrier frequency offset (CFO) and sampling frequency offset (SFO) with respect to the reference frequencies in the gateway. This disclosure enables efficient real-time calculation of accurate SFO and CFO at the gateway, thus the ultra-low power mm-scale sensor node can be realized without a costly and bulky clock reference crystal and also power-hungry phase lock loop. In the proposed system, the crystal-less sensor starts transmission with repetitive RF pulses with a constant interval, followed by the data payload using pulse-position modulation (PPM). A proposed algorithm uses a two-dimensional (2D) fast Fourier transform (FFT) based process that identifies the SFO and CFO at the same time to establish successful wireless communication between the gateway and crystal-less sensor nodes.
Abstract:
Read alignment is a time-consuming step in genome sequencing analysis. The most widely used software for read alignment, BWA-MEM and BWA-MEM2 are based on the seed-and-extend paradigm for read alignment. The seeding step of read alignment is a major bottleneck contributing ˜38% of the overall execution time in BWA-MEM2 when aligning whole human genome. This is because BWA-MEM2 uses a compressed index structure called the FMD-Index, which results in high bandwidth requirements, primarily due to its character-by-character processing of reads. To address these challenges, a novel seeding data structure is presented along with a custom accelerator architecture for seeding.