Abstract:
A system includes a first optical unit that emits light to a measurement target object and receives first interference light incident from the measurement target object, a second optical unit that emits the light to a reference object configured to have a constant optical path length with respect to a temperature fluctuation and receives second interference light incident from the reference object, a spectroscope connected to the first optical unit and the second optical unit and receives the first interference light and the second interference light to be incident, and a control unit connected to the spectroscope, and the control unit calculates a fluctuation rate of a measurement optical path length with respect to a reference optical path length under a predetermined temperature environment on the basis of the optical path length of the reference object calculated on the basis of the second interference light incident on the spectroscope under the predetermined temperature environment, and the reference optical path length of the reference object acquired in advance, and corrects, on the basis of the fluctuation rate, the optical path length of the measurement target object calculated on the basis of the first interference light incident on the spectroscope under the predetermined temperature environment.
Abstract:
A plasma processing apparatus includes a first mounting table on which a target object to be processed is mounted, a second mounting table provided around the first mounting table, and an elevation mechanism. A focus ring is mounted on the second mounting table. The second mounting table has therein a temperature control mechanism. The elevation mechanism is configured to vertically move the second mounting table.
Abstract:
A position detecting system has a transport device, a light source, at least one optical element, a reflective member, a drive unit, and a controller. The transport device transports and places an object on a placement table. The light source generates measurement light. The optical element projects the measurement light, as projection light, generated by the light source and receives reflected light. The reflective member is disposed on the transport device. The reflective member reflects the projection light toward the placement table, and reflects the reflected light of the projection light, which is projected toward the placement table, toward the optical element. The drive unit operates the transport device so that the reflective member scans a plurality of linear scanning ranges. The controller calculates positional relationship between the focus ring and the object placed on the placement table based on the reflected light within the plurality of linear scanning ranges.
Abstract:
There is provided a position detection system for use in a processing apparatus including a mounting table configured to mount thereon a disc-shaped target object and a focus ring surrounding a periphery of the mounting table. The system includes a light source configured to generate measurement light, three or more optical elements configured to emit the measurement light as emission light and receive reflected light, a driving unit configured to move each of the optical elements such that a scanning range from the focus ring to the target object is scanned, and a control unit configured to obtain positional relation between the focus ring and the target object based on the reflected light in the scanning range of each of the optical elements.
Abstract:
The interference optical system includes a light source, a collimator, a light-receiving element, a tunable filter, and a calculation apparatus. The collimator emits measuring light from the light source to a first main surface of the object, and receives reflected light from the first main surface and a second main surface. The light-receiving element acquires an intensity of light from the collimator. The tunable filter sweeps a wavelength of the light incident to the light-receiving element. The calculation apparatus measures an interference intensity distribution that has wavelength dependence and is an intensity distribution of the reflected light from the first main surface and the second main surface, and measures the thickness or the temperature of the object based on a waveform obtained by Fourier transforming the interference intensity distribution.
Abstract:
There are provided a method for obtaining a distance between a base portion of an electrostatic chuck and a back surface of a target object and a method for neutralizing the electrostatic chuck based on the obtained distance. The electrostatic chuck has an upper surface including the base portion and a plurality of convex portions projecting from the base portion. The target object is mounted on apexes of the convex portions of the electrostatic chuck such that the back surface is in contact with the apexes. By processing a first wavelength spectrum output from a spectroscope based on reflected light of light emitted from a light source, a distance between the back surface of the target object and the base portion of the electrostatic chuck is calculated. Based on the calculated distance, a voltage is applied to the electrostatic chuck to neutralize the electrostatic chuck.