Abstract:
The present invention relates the use of a pump in a loop reactor for the production of polyethylene, as well as a reactor comprising such pump and methods for producing polyolefin by means of such reactor. The pump according to the invention is characterized in that it is an axial flow impeller circulation pump, wherein the impeller comprises 6 blades and wherein the pump is fixed on a spring supported frame. Use of the pump according to the present invention allows for preparation of homogeneous polyethylene products that meet high quality standards from the complicated ethylene polymerization mixtures while at the same time being produced with low energy consumption.
Abstract:
An apparatus may include a mud pot and a reflectometer to monitor a level of an interface between liquid diluent and catalyst slurry in the mud pot using reflectometry. The apparatus may include a mixing tank and a conduit to transfer catalyst slurry from the mud pot to the mixing tank. The apparatus may include a polymerization reactor and a conduit to provide catalyst slurry from the mixing tank to the polymerization reactor.
Abstract:
The present invention relates to an apparatus and process for polymerizing olefins. One embodiment comprises polymerizing at least one monomer in a first loop reactor in the presence of a catalyst to produce a first polyolefin fraction. A portion of the first polyolefin fraction is transferred to a second loop reactor, connected in series with the first loop reactor. The process further comprises polymerizing in the second loop reactor at least one monomer in the presence of a catalyst to produce a second polyolefin fraction in addition to the first polyolefin fraction. The combination of the first and second polyolefin fractions can produce a polymer resin fluff having bimodal molecular weight distribution.
Abstract:
A process includes preparing a diluted catalyst slurry in a catalyst slurry preparation system. The diluted catalyst slurry contains solid particulate catalyst and liquid hydrocarbon diluent. The catalyst slurry preparation system includes a mixing vessel with a top part, a bottom part and a rotatable impeller system which is actuated by a motor. The rotatable impeller system has a magnetic actuated agitator shaft which is positioned along a longitudinal axis of the mixing vessel and extends through the top part of the mixing vessel. At least two double-bladed hubs are fixed to the magnetic actuated agitator shaft.
Abstract:
The present invention discloses a method for transforming a single reactor line into a double reactor line wherein the existing single reactor line is equipped with a flash tank for separating the solid polymer product from the flash vapor and wherein the vapor is sent to a system of at least two separating columns allowing the separation of its constituents into monomer, diluent and comonomer.
Abstract:
A method for the copolymerization of ethylene and a C3+ olefin in a loop reactor and polymers formed therefrom are described herein. The method generally includes introducing an ethylene monomer, a C3+ olefin and a diluent carrier liquid into a loop reactor. A catalyst system can be supplied to said loop reactor. The diluent liquid, ethylene monomer, and C3+ olefin can be circulated through said loop reactor, while copolymerizing said ethylene and C3+ olefin in the presence of said catalyst system to produce a slurry. The slurry can be diverted into a settling leg, and sequentially discharged therefrom and withdrawn from said loop reactor. An ethylene monomer co-feed can be introduced into said loop reactor at spaced locations downstream of the ethylene and diluent. The ethylene co-feed can be introduced in an amount effective to reduce the variation in the ratio of ethylene and C3+ olefin.
Abstract:
The present invention relates to an apparatus and process for polymerizing olefins. One embodiment comprises polymerizing at least one monomer in a first loop reactor in the presence of a catalyst to produce a first polyolefin fraction. A portion of the first polyolefin fraction is transferred to a second loop reactor, connected in series with the first loop reactor. The process further comprises polymerizing in the second loop reactor at least one monomer in the presence of a catalyst to produce a second polyolefin fraction in addition to the first polyolefin fraction. The combination of the first and second polyolefin fractions can produce a polymer resin fluff having bimodal molecular weight distribution.
Abstract:
The present invention relates to an apparatus and process for polymerizing olefins. One embodiment comprises polymerizing at least one monomer in a first loop reactor in the presence of a catalyst to produce a first polyolefin fraction. A portion of the first polyolefin fraction is transferred to a second loop reactor, connected in series with the first loop reactor. The process further comprises polymerizing in the second loop reactor at least one monomer in the presence of a catalyst to produce a second polyolefin fraction in addition to the first polyolefin fraction. The combination of the first and second polyolefin fractions can produce a polymer resin fluff having bimodal molecular weight distribution.
Abstract:
The present invention relates to a process of preparing a polyolefin in a loop reactor by introducing anti-fouling agent in by-pass pipes. Also, the invention relates to the use of anti-fouling agent to prevent blockage by feeding the anti-fouling agent into the by-pass pipes of the loop reactor.
Abstract:
The present invention relates to an apparatus and process for polymerizing olefins. One embodiment comprises polymerizing at least one monomer in a first loop reactor in the presence of a catalyst to produce a first polyolefin fraction. A portion of the first polyolefin fraction is transferred to a second loop reactor, connected in series with the first loop reactor. The process further comprises polymerizing in the second loop reactor at least one monomer in the presence of a catalyst to produce a second polyolefin fraction in addition to the first polyolefin fraction. The combination of the first and second polyolefin fractions can produce a polymer resin fluff having bimodal molecular weight distribution.