Abstract:
The present embodiment is a tank having a liner and a first protective layer disposed on an outer peripheral surface of the liner and configured such that a resin-impregnated fiber bundle including a reinforcing fiber bundle and a first matrix resin is wound around the liner, wherein the resin-impregnated fiber bundle has a folded portion fixed in a bent state at a winding end portion of the resin-impregnated. fiber bundle.
Abstract:
A rotary roller surface cleaning method and a rotary roller surface cleaning apparatus which, when foreign matter is detected on a surface of a rotary roller of a quenched ribbon manufacturing apparatus, remove the foreign matter by irradiating the foreign matter with a laser having an output value corresponding to a thickness of the foreign matter. At least one of a rotation speed of the rotary roller and a laser response time is adjusted such that the rotation speed of the rotary roller and the laser response time satisfy a relational expression V×S≦D/1000 (D≧0.1 mm), where the rotation speed of the rotary roller is V (m/sec), the laser response time is S (sec), and a length of the foreign matter along a circumferential direction of the rotary roller is D (mm).
Abstract translation:一种旋转辊表面清洁方法和旋转辊表面清洁装置,当在淬火带制造装置的旋转辊的表面上检测到异物时,通过用具有输出值的激光照射异物来除去异物 对应于异物的厚度。 旋转辊的旋转速度和激光响应时间中的至少一个被调整为使得旋转辊的旋转速度和激光响应时间满足关系式V×S≦̸ D / 1000(D≥0.1mm), 其中旋转辊的旋转速度为V(m / sec),激光响应时间为S(秒),异物沿旋转辊的圆周方向的长度为D(mm)。
Abstract:
The present disclosure provides a nozzle structure for a hydrogen gas burner apparatus capable of reducing an amount of generated NOx. A nozzle structure for a hydrogen gas burner apparatus includes an outer tube and an inner tube concentrically disposed inside the outer tube. The inner tube is disposed so that an oxygen-containing gas is discharged from an opened end of the inner tube in an axial direction of the inner tube. The outer tube extends beyond the opened end of the inner tube in the axial direction of the inner tube so that a hydrogen gas passes through a space between an inner circumferential surface of the outer tube and an outer circumferential surface of the inner tube.
Abstract:
A method includes: manufacturing a sintered compact represented by (Rl)x(Rh)yTzBsMt and has a grain boundary phase; manufacturing a rare earth magnet precursor from the sintered compact; and performing a heat treatment on the rare earth magnet precursor at 450° C. to 700° C. to diffuse and to infiltrate a melt of a modified alloy containing a light rare earth element and either a transition metal element, Al, In, Zn, or Ga into the grain boundary phase. Rl represents a light rare earth element. Rh represents Dy or Tb. T represents a transition metal containing at least one of Fe, Ni, and Co. B represents boron. M represents at Ga, Al, or Cu. x, y, z, s, and t represent mass % of Rl, Rh, T, B, and M. Following expressions are established: 27≦x≦44, 0≦y≦10, z=100−x−y−s−t, 0.75≦s≦3.4, 0≦t≦3. An infiltration amount of the modified alloy is 0 mass % to 5 mass %.
Abstract:
A method of manufacturing a rare earth magnet includes: a first step of manufacturing a sintered compact by press-forming a powder for the rare earth magnet; a second step of manufacturing a rare earth magnet precursor by performing hot deformation processing on the sintered compact to impart anisotropy to the sintered compact; and a third step of manufacturing the rare earth magnet by cooling the rare earth magnet precursor at a cooling rate of 10° C./sec or higher.
Abstract:
A carbon fiber recovery method for recovering carbon fibers from a fiber reinforced plastic member having a carbon fiber reinforced plastic (CFRP) layer on which a glass fiber reinforced plastic (GFRP) layer is formed is provided. This method includes: forming a cut that penetrates through the GFRP layer and reaches the CFRP layer in the fiber reinforced plastic member; causing a heated phosphorus-containing solution to penetrate from the cut and separating the CFRP layer from the GFRP layer in the vicinity of an interface between the CFRP layer and the GFRP layer; and dissolving, by a resin solution, a resin part of the CFRP layer from which the GFRP layer has been removed and then recovering the remaining carbon fibers.
Abstract:
The present disclosure provides a nozzle structure for a hydrogen gas burner apparatus, capable of reducing an amount of generated NOx. A nozzle structure for a hydrogen gas burner apparatus, includes an outer pipe, an inner pipe disposed concentrically with the outer pipe, and a stabilizer configured to throttle a space between the outer pipe and the inner pipe. The inner pipe includes an inner pipe end part with an axial opening hole and a circumferential opening hole formed therein, the axial opening hole penetrating in an axial direction of the inner pipe, the circumferential opening hole penetrating in a radial direction of the inner pipe. A hydrogen gas flows through the inner pipe. The circumferential opening hole lets the hydrogen gas flow out from the inner pipe in the radial direction of the inner pipe.
Abstract:
The present disclosure provides a nozzle structure for a hydrogen gas burner apparatus capable of reducing an amount of generated NOx. A nozzle structure for a hydrogen gas burner apparatus includes an outer tube and an inner tube concentrically disposed inside the outer tube. The inner tube is disposed so that an oxygen-containing gas is discharged from an opened end of the inner tube in an axial direction of the inner tube. The outer tube extends beyond the opened end of the inner tube in the axial direction of the inner tube so that a hydrogen gas passes through a space between an inner circumferential surface of the outer tube and an outer circumferential surface of the inner tube.
Abstract:
A manufacturing method includes: manufacturing a sintered compact having a composition of (Rl)x(Rh)yTzBsMt; manufacturing a precursor by performing hot deformation processing on the sintered compact; and manufacturing a rare earth magnet by performing an aging treatment on the precursor in a temperature range of 450° C. to 700° C. In this method, a main phase thereof is formed of a (RlRh)2T14B phase. A content of a (RlRh)1.1T4B4 phase in a grain boundary phase thereof is more than 0 mass % and 50 mass % or less. Rl represents a light rare earth element. Rh represents a heavy rare earth element. T represents a transition metal. M represents at least one of Ga, Al, Cu, and Co. x, y, z, s, and t are percentages by mass of Rl, Rh, T, B, and M. x, y, z, s, and t are expressed by the following expressions: 27≦x≦44, 0≦y≦10, z=100−x−y−s−t, 0.75≦s≦3.4, 0≦t≦3.
Abstract:
Provided is a method for manufacturing a rare-earth magnet capable of manufacturing a rare-earth magnet having excellent magnetic characteristics from magnetic powder that is prepared by liquid rapid-quenching and including both of nano-crystalline substance and amorphous substance as well. A method for manufacturing a rare-earth magnet includes: a first step of rapidly quenching of molten metal that is represented by a composition formula of (R1)x(Rh)yTzBsMt (R1 denotes one type or more of light rare-earth element containing Y, Rh denotes a heavy rare-earth element containing at least one type of Dy and Tb, T denotes transition metal containing at least one type of Fe, Ni and Co, B denotes boron, M denotes at least one type of Ga, Al and Cu, and 27≦x≦44, 0≦y≦10, z=100-x-y-s-t, 0.75≦s≦3.4, 0≦t≦3 all in terms of percent by mass) to prepare magnetic powder MF including mixture of nano-crystalline magnetic powder having an average crystalline grain size of 500 nm or less and amorphous magnetic powder; and a second step of sintering the magnetic powder MF including the mixture of nano-crystalline magnetic powder and the amorphous magnetic powder to prepare a sintered body S, and performing hot deformation processing of the sintered body S to manufacture the rare-earth magnet C.