Abstract:
Provided is a method for manufacturing a fiber reinforced resin molded article capable of effectively reducing the occurrence of a preform with poor resin impregnation, and such a manufacturing device thereof. After it is detected that a predetermined amount (the same amount) of resin has been individually poured into a plurality of cavities provided in a mold, the fiber layers of preforms are impregnated (compressively filled) with resin. Pressure sensors for detecting a resin injection amount are used. When closing runners, a small gap is formed in the runners.
Abstract:
Provided is a method for manufacturing a fiber reinforced resin molded article capable of preventing oxidation and degradation of a liner making up a preform at a high temperature, and such a manufacturing device thereof. Prior to pouring resin into a mold, the method fills inert gas (nitrogen gas, for example) into the mold. After filling inert gas (nitrogen gas, for example) into the mold, the method closes an upper mold (second mold) placed with a gap (second gap) with a preform (i.e., brings it closer to the preform).
Abstract:
In a tank manufacturing method using a helical winding device that winds fiber bundles around a mandrel, the device includes: a first guide ring having an opening to pass the mandrel therethrough and placed around the mandrel with an axial center of the mandrel being taken as a center; and a plurality of first guide portions placed in the first guide ring along a circumferential direction around the axial center and configured to supply first fiber bundles to the mandrel. The method includes: moving the mandrel relative to the first guide ring along an axial center direction along the axial center such that the mandrel passes through the opening; and winding the fiber bundles around the mandrel while relatively moving the mandrel in the moving, by the first guide portions supplying the first fiber bundles to the mandrel with the first guide portions swinging in the circumferential direction.
Abstract:
A filament winding apparatus includes a hoop winding unit that is configured to hoop wind a plurality of fiber bundles on an outer surface of a liner of a tank by rotating along a circumferential direction of the liner while moving back and forth along an axial direction of the liner. The hoop winding unit includes a fiber-bundle guide assembly that is configured to rotate along the circumferential direction of the liner during the moving back and forth of the hoop winding unit, and to guide the plurality of fiber bundles to the outer surface of the liner. The fiber-bundle guide assembly has a first fiber-turn section configured to change a moving direction of the plurality of fiber bundles from an approach direction to a turned direction perpendicular to the approach direction, wherein the plurality of fiber bundles are supplied to the fiber-bundle guide assembly in the approach direction with a state where the plurality of fiber bundles are arrayed in parallel with each other in a width direction perpendicular to the approach direction.
Abstract:
A fiber bundle processing device (filament winding device (100)) that processes a fiber bundle (Fb) having a heat-curable resin impregnated therein, characterized by: comprising a curing device (45A) capable of applying heat to the fiber bundle (Fb); and the curing device (45A) curing or semi-curing some of the resin impregnated into the fiber bundle (Fb), when the fiber bundle (Fb) is partway through being guided into the fiber bundle processing device (filament winding device (100)).
Abstract:
Provided is a method for manufacturing a tank and a manufacturing device thereof that can achieve resin impregnation within a short time. The method wraps fibers in an overlapping manner in a radial direction around an outer surface of a liner such that a first fiber layer (braiding layer) on an outer surface of a dome portion is less dense than a second fiber layer (helical layer) on an outer surface of a straight body portion and such that a portion of a lamina of the first fiber layer, which is less dense, is interposed continuously from the first fiber layer partially between laminae of the second fiber layer, and then impregnates the fiber layer including the first fiber layer and the second fiber layer with a resin.
Abstract:
Provided is a manufacturing method for manufacturing a high-pressure tank by infiltrating resin into a fiber layer of a preform in which the fiber layer is formed on an outer surface a liner. The manufacturing method includes: a first supply step of supplying resin to the fiber layer of the preform; and a second supply step of, after the first supply step, supplying, to the fiber layer, resin to which spherical particles are added.
Abstract:
Provided is a method for manufacturing a fiber reinforced resin molded article capable of effectively increasing the strength of a fiber reinforced resin molded article, such as a high-pressure tank, and such a manufacturing device thereof. With use of a cutting core that is heated to a higher temperature than a mold, the curing of a portion of resin (thermosetting resin) to be cut in a runner is facilitated, and the portion of the resin to be cut in the runner is cut by the cutting core. The heating temperature of the cutting core is higher than the temperature of the mold and lower than the heating temperature in an aftercure step performed after removing the high-pressure tank from the mold.
Abstract:
A filament winding device (100) comprising a liner support device (42) supporting a liner (1), and a hoop winding device (43) that winds a fiber bundle (F) on to the outer peripheral surface (1S) of the liner (1) by rotating centered around the liner (1). The filament winding device (100) is characterized by being capable of simultaneously transporting the liner (1) and the hoop winding device (43), by having the liner support device (42) and the hoop winding device (43) arranged upon a trolley (40A), and moving the trolley (40A).
Abstract:
There is provided a fiber holding device, comprising: a bobbin supported to be rotatable about an axis and configured to hold a fiber wound thereon; a release member configured to apply a force to the fiber drawn from the bobbin in a direction from the axis of the bobbin toward outer periphery; a tension applying member configured to apply tension to the fiber drawn from the bobbin; and an extended section extended from the bobbin and arranged to integrally hold the release member and the tension applying member in a sequence of the release member and the tension applying member toward downstream in a drawing direction of the fiber.