摘要:
A semiconductor memory device having self-aligned contacts, capable of preventing a short-circuit between contacts for bit lines and contacts for storage electrodes and improving a process margin, and a method of fabricating the same are provided. The semiconductor memory device having self-aligned contacts includes a plurality of gate electrode patterns arranged in parallel on a semiconductor substrate, in which a plurality of first spacers are formed along the sidewalls of the gate electrode patterns, a first interdielectric layer formed on the entire surface of a resultant in which the first spacers are formed, a plurality of bit line patterns arranged in parallel on the first interdielectric layer to be perpendicular to the gate electrode patterns, in which a plurality of second spacers are formed along the sidewalls of the bit line patterns, a plurality of contacts for bit lines self-aligned with the first spacers, a second interdielectric layer formed on the entire surface of a resultant in which the second spacers are formed, and a plurality of contacts for storage electrodes simultaneously self-aligned with the second and first spacers.
摘要:
A semiconductor memory device having self-aligned contacts, capable of preventing a short-circuit between contacts for bit lines and contacts for storage electrodes and improving a process margin, and a method of fabricating the same are provided. The semiconductor memory device having self-aligned contacts includes a plurality of gate electrode patterns arranged in parallel on a semiconductor substrate, in which a plurality of first spacers are formed along the sidewalls of the gate electrode patterns, a first interdielectric layer formed on the entire surface of a resultant in which the first spacers are formed, a plurality of bit line patterns arranged in parallel on the first interdielectric layer to be perpendicular to the gate electrode patterns, in which a plurality of second spacers are formed along the sidewalls of the bit line patterns, a plurality of contacts for bit lines self-aligned with the first spacers, a second interdielectric layer formed on the entire surface of a resultant in which the second spacers are formed, and a plurality of contacts for storage electrodes simultaneously self-aligned with the second and first spacers.
摘要:
A semiconductor memory device having self-aligned contacts, capable of preventing a short-circuit between contacts for bit lines and contacts for storage electrodes and improving a process margin, and a method of fabricating the same are provided. The semiconductor memory device having self-aligned contacts includes a plurality of gate electrode patterns arranged in parallel on a semiconductor substrate, in which a plurality of first spacers are formed along the sidewalls of the gate electrode patterns, a first interdielectric layer formed on the entire surface of a resultant in which the first spacers are formed, a plurality of bit line patterns arranged in parallel on the first interdielectric layer to be perpendicular to the gate electrode patterns, in which a plurality of second spacers are formed along the sidewalls of the bit line patterns, a plurality of contacts for bit lines self-aligned with the first spacers, a second interdielectric layer formed on the entire surface of a resultant in which the second spacers are formed, and a plurality of contacts for storage electrodes simultaneously self-aligned with the second and first spacers.
摘要:
There is provided a method of fabricating a semiconductor memory device having a self-aligned contact, including the steps of forming a plurality of gate electrodes by interposing a gate insulating layer on an active region of a semiconductor substrate in a predetermined direction at constant intervals, forming a first insulating layer on the resultant structure having the gate electrodes and then forming one or more of each of first and second openings which partially open an active region of the semiconductor substrate, forming first and second pad layers by filling the first and second openings with a conductive material, forming a first interlayer dielectric film on the first insulating layer having the first and second pad layers and forming a third opening which opens the surface of the first pad layer, forming a plurality of bit lines in a direction orthogonal to the gate electrodes on the first interlayer dielectric film while filling the third opening, depositing an insulating layer on the resultant structure having the bit lines and removing the insulating layer on the bit lines and on the first interlayer dielectric film to form insulating spacers only at both side walls of the bit lines, forming a second interlayer dielectric film on the resultant structure having the insulating spacers and forming a fourth opening self-aligned to the insulating spacers to open the surface of the second pad layer, and filling the fourth opening with a conductive material.
摘要:
There is provided a method of fabricating a semiconductor memory device having a self-aligned contact, including the steps of forming a plurality of gate electrodes by interposing a gate insulating layer on an active region of a semiconductor substrate in a predetermined direction at constant intervals, forming a first insulating layer on the resultant structure having the gate electrodes and then forming one or more of each of first and second openings which partially open an active region of the semiconductor substrate, forming first and second pad layers by filling the first and second openings with a conductive material, forming a first interlayer dielectric film on the first insulating layer having the first and second pad layers and forming a third opening which opens the surface of the first pad layer, forming a plurality of bit lines in a direction orthogonal to the gate electrodes on the first interlayer dielectric film while filling the third opening, depositing an insulating layer on the resultant structure having the bit lines and removing the insulating layer on the bit lines and on the first interlayer dielectric film to form insulating spacers only at both side walls of the bit lines, forming a second interlayer dielectric film on the resultant structure having the insulating spacers and forming a fourth opening self-aligned to the insulating spacers to open the surface of the second pad layer, and filling the fourth opening with a conductive material.
摘要:
A method for forming a conductive contact of a semiconductor device is provided. According to one aspect of the present invention, a dummy dielectric layer pattern having a dummy opening and an interdielectric layer pattern having a lower etch-rate than that of the dummy dielectric layer, for filling the dummy opening are formed on a semiconductor substrate. The dummy dielectric layer pattern using the interdielectric layer pattern as an etching mask is selectively removed, and a contact opening for exposing the semiconductor substrate of a portion in which the dummy dielectric layer pattern is located.
摘要:
A method for etching a platinum (Pt) layer of a semiconductor device is provided which improves the etching slope of a sidewall of the platinum layer used as a storage node of the semiconductor device. The semiconductor device consists of a semiconductor substrate including a bottom layer on which various other layers are formed. Specifically, according to this invention, a Pt layer is formed on a bottom layer of a semiconductor substrate. An adhesive layer is then formed on the Pt layer while a mask layer is formed on the adhesive layer. After formation of the various layers, the mask layer and adhesive layer are patterned using an etching process to form a mask pattern and an adhesive layer mask pattern, respectively. The semiconductor substrate is then heated and an etching process is performned on the Pt layer using the mask pattern and the adhesive layer mask pattern to form etching slope sidewalls of the Pt layer having etching slopes close to vertical. Accordingly, the Pt electrodes of the semiconductor device of the present invention have a finer pattern than those of the prior art. Finally, overetching is done to remove the mask pattern.
摘要:
A semiconductor memory device includes a bit line stack and a storage node contact hole which are aligned at bit line spacers formed at both side walls of the bit line stack and exposes a pad. The semiconductor memory device includes a multi-layered storage node contact plug in which a first storage node contact plug and a second storage node contact plug are sequentially formed. The first storage node contact plug is formed of titanium nitride and the second storage node contact plug is formed of polysilicon. An ohmic layer may be formed on the pad and under the first storage node contact plug. A barrier metal layer, which acts as a third storage node contact plug, may be formed on the second storage node contact plug.
摘要:
A method for forming a patterned platinum layer on a microelectronic substrate includes the steps of forming a platinum layer on the microelectronic substrate, and forming a mask layer on the platinum layer. In particular, the mask layer defines exposed portions of the platinum layer, and the mask layer comprises a mask material including titanium. The exposed portions of the platinum layer are then selectively removed to form the patterned platinum layer. Related structures are also disclosed.
摘要:
A method of etching a platinum (Pt) layer of a semiconductor device includes the steps of forming a platinum layer on a semiconductor substrate, and forming a mask layer on the platinum layer. A photoresist pattern is formed on the mask layer and a mask pattern is formed by plasma-etching using the photoresist pattern as a mask. A platinum pattern is formed by plasma-etching using the photoresist pattern and the mask pattern as a mask. A platinum etching by-product is formed on the sidewalls of the photoresist pattern. The platinum layer is plasma-etched using Ar, Ar/Cl.sub.2 or Ar/HBr gas. The photoresist pattern is removed and then the platinum etching by-product and the mask pattern are removed by plasma etching. The platinum etching by-product is plasma-etched using Cl.sub.2 /O.sub.2 or HBr/O.sub.2 gas. The platinum pattern may be formed in the same etch chamber through multiple steps, and the platinum layer is etched using Ar, Ar/Cl.sub.2 or Ar/HBr, to thereby increase the etch rate and obtain a platinum pattern having a high etch slope.