摘要:
A field emission type backlight device can include upper and lower substrates facing each other with a gap between them, an anode electrode on a lower side of the upper substrate, a fluorescent layer on a lower side of the anode electrode, a lower gate electrode on an upper side of the lower substrate, an insulating layer on an upper side of the lower gate electrode, a cathode electrode on an upper side of the insulating layer, and a gate electrode that is provided on an upper side of the insulating layer and electrically connected to the lower gate electrode.
摘要:
A field emission type backlight device can include upper and lower substrates facing each other with a gap between them, an anode electrode on a lower side of the upper substrate, a fluorescent layer on a lower side of the anode electrode, a lower gate electrode on an upper side of the lower substrate, an insulating layer on an upper side of the lower gate electrode, a cathode electrode on an upper side of the insulating layer, and a gate electrode that is provided on an upper side of the insulating layer and electrically connected to the lower gate electrode.
摘要:
A bottom-surface emitting organic light emitting device and a method of manufacturing the organic light emitting device includes providing a transparent substrate, an organic light emitting diode (“OLED”) that includes a transparent electrode, an organic light emitting layer, and a pixel electrode sequentially stacked on an upper surface of the transparent substrate, a planarization film covering the OLED, and a pixel circuit that drives the OLED using an organic thin film transistor (“OTFT”) located on the planarization film.
摘要:
A flat panel display device including a display area where an image is displayed and a non-display area located at an outside of the display area includes bank portions arranged in a pattern in the display area and partitioning a plurality of openings, emission elements located in the openings, dummy bank portions formed in the non-display area and integrated therewith, and a sealing passivation layer having a multi-layered structure of organic films and inorganic films alternately arranged, one organic film being located at an interface directly contacting the emission element and one inorganic film located firstly on an outermost portion of the dummy bank portions when the sealing passivation layer extends from the display area to the non-display area.
摘要:
A voltage transfer method and apparatus using an organic thin film transistor (“TFT”) and an organic light emitting diode (OLED) display device including the same to increase response speed of the organic TFT. The voltage transmission method includes turning on the organic TFT, applying a first voltage having a plurality of different levels to one side of the organic TFT while the organic thin film transistor is turned on, and outputting a second voltage from the other side of the organic TFT.
摘要:
A flat panel display device including a display area in which a desired image is displayed, and a non-display area arranged outside the display area includes bank portions arranged on a substrate in a predetermined pattern in the display area and partitioning a plurality of first openings, an emission element arranged at each first opening, dummy bank portions formed in the non-display area together with the bank portions and a sealing passivation layer covering the emission element, the sealing passivation layer includes at least a two-layer structure including an organic film and an inorganic film alternately deposited, arranged along a surface defining the dummy bank portions on the upper surface of the emission element, and having a sectional portion directed to and contacting the substrate or a film on the substrate.
摘要:
A bottom-surface emitting organic light emitting device and a method of manufacturing the organic light emitting device includes providing a transparent substrate, an organic light emitting diode (“OLED”) that includes a transparent electrode, an organic light emitting layer, and a pixel electrode sequentially stacked on an upper surface of the transparent substrate, a planarization film covering the OLED, and a pixel circuit that drives the OLED using an organic thin film transistor (“OTFT”) located on the planarization film.
摘要:
A field emission device using carbon nanotubes (CNTs) is provided. The field emission device includes a cathode on which a plurality of CNT emitters are arranged, a gate insulating layer having a through hole through which electrons emitted from the CNT emitters pass, and a gate electrode which corresponds to the through hole of the gate insulating layer and has an enlongated gate hole that forms an electric field having different strengths in a first direction and in a second direction orthogonal to the first direction.
摘要:
The present invention is related to a biochip and a biomolecular detection system using the same. In particular, the biomolecular detection system is capable of detecting biological molecules (biomolecules) such as DNA or protein at a high speed. The biochip comprises a supporting structure, conductive materials aligned vertically on, and associated with, the supporting structure, and biomolecule probes operably linked to the conductive materials. The biomolecular detection system using the biochip may precisely detect biomolecules as well as the density of the biomolecules.
摘要:
The present invention is related to a biochip and a biomolecular detection system using the same. In particular, the biomolecular detection system is capable of detecting biological molecules (biomolecules) such as DNA or protein at a high speed. The biochip comprises a supporting structure, conductive materials aligned vertically on, and associated with, the supporting structure, and biomolecule probes operably linked to the conductive materials. The biomolecular detection system using the biochip may precisely detect biomolecules as well as the density of the biomolecules.