Abstract:
Some embodiments relate to a manufacturing method for a semiconductor device. In this method, a semiconductor workpiece, which includes a metal gate electrode thereon, is provided. An opening is formed in the semiconductor workpiece to expose a surface of the metal gate. Formation of the opening leaves a polymeric residue on the workpiece. To remove the polymeric residue from the workpiece, a cleaning solution that includes an organic alkali component is used. Other embodiments related to a semiconductor device resulting from the method.
Abstract:
A wet chemical processing method and apparatus for use in semiconductor manufacturing and in other applications, is provided. The method and apparatus provide for energizing a processing liquid such as a cleaning or etching liquid using ultrasonic, megasonic or other energy waves or by combining the liquid with a pressurized gas to form a pressurized spray, or using both. The energized, pressurized fluid is directed to a substrate surface using a fluid delivery system and overcomes any surface tensions associated with liquids, solids, or air and enables the processing liquid to completely fill any holes such as contact holes, via holes or trenches, formed on the semiconductor substrate.
Abstract:
An apparatus, semiconductor device and method of manufacture are presented, wherein a hard mask layer and one or more etch stop layers are etched in an etching chamber. In an embodiment the semiconductor device is placed on a mounting platform at a first height and an etch process is performed, then the semiconductor device is moved to a second height within the chamber and a second etch process is performed, with the rotational speed of the semiconductor device reduced during movements in order to reduce the chance of cross contamination.
Abstract:
An apparatus, semiconductor device and method of manufacture are presented, wherein a hard mask layer and one or more etch stop layers are etched in an etching chamber. In an embodiment the semiconductor device is placed on a mounting platform at a first height and an etch process is performed, then the semiconductor device is moved to a second height within the chamber and a second etch process is performed, with the rotational speed of the semiconductor device reduced during movements in order to reduce the chance of cross contamination.
Abstract:
An apparatus, semiconductor device and method of manufacture are presented, wherein a hard mask layer and one or more etch stop layers are etched in an etching chamber. In an embodiment the semiconductor device is placed on a mounting platform at a first height and an etch process is performed, then the semiconductor device is moved to a second height within the chamber and a second etch process is performed, with the rotational speed of the semiconductor device reduced during movements in order to reduce the chance of cross contamination.
Abstract:
Some embodiments relate to methods and apparatus for providing a homogeneous wafer temperature profile in a wafer cleaning tool without introducing unwanted particles onto the wafer. In some embodiments, a disclosed wafer cleaning tool has a processing chamber configured to house a semiconductor wafer. A dispensing arm provides a high temperature cleaning solution to the semiconductor wafer. A heating cup is located within the processing chamber at a position that is around the perimeter of the semiconductor wafer. The heating cup generates heat that increases the temperature of outer edges of the semiconductor wafer by a greater amount than a temperature of a center of the semiconductor wafer, thereby homogenizing an internal temperature profile of the semiconductor wafer.
Abstract:
Some embodiments relate to a manufacturing method for a semiconductor device. In this method, a semiconductor workpiece, which includes a metal gate electrode thereon, is provided. An opening is formed in the semiconductor workpiece to expose a surface of the metal gate. Formation of the opening leaves a polymeric residue on the workpiece. To remove the polymeric residue from the workpiece, a cleaning solution that includes an organic alkali component is used. Other embodiments related to a semiconductor device resulting from the method.
Abstract:
An apparatus, semiconductor device and method of manufacture are presented, wherein a hard mask layer and one or more etch stop layers are etched in an etching chamber. In an embodiment the semiconductor device is placed on a mounting platform at a first height and an etch process is performed, then the semiconductor device is moved to a second height within the chamber and a second etch process is performed, with the rotational speed of the semiconductor device reduced during movements in order to reduce the chance of cross contamination.
Abstract:
An apparatus, semiconductor device and method of manufacture are presented, wherein a hard mask layer and one or more etch stop layers are etched in an etching chamber. In an embodiment the semiconductor device is placed on a mounting platform at a first height and an etch process is performed, then the semiconductor device is moved to a second height within the chamber and a second etch process is performed, with the rotational speed of the semiconductor device reduced during movements in order to reduce the chance of cross contamination.
Abstract:
Some embodiments relate to methods and apparatus for providing a homogeneous wafer temperature profile in a wafer cleaning tool without introducing unwanted particles onto the wafer. In some embodiments, a disclosed wafer cleaning tool has a processing chamber configured to house a semiconductor wafer. A dispensing arm provides a high temperature cleaning solution to the semiconductor wafer. A heating cup is located within the processing chamber at a position that is around the perimeter of the semiconductor wafer. The heating cup generates heat that increases the temperature of outer edges of the semiconductor wafer by a greater amount than a temperature of a center of the semiconductor wafer, thereby homogenizing an internal temperature profile of the semiconductor wafer.