Abstract:
A data verifying method, a chip, and a verifying apparatus are provided. In the method, an encoder is provided for at least one processing circuit of a chip. One or more transmitting data of a to-be-test circuit of the processing circuit is encoded through the encoder to generate one or more parity data. The transmitting data is a computing result generated by the to-be-test circuit. The parity data is transmitted without the transmitting data. The parity data is used for data verification of the transmitting data.
Abstract:
The present disclosure relates to a device and method to reduce the dynamic/static power consumption of an MCML logic device. In order to retain register contents during power off mode, an MCML retention latch and flip-flop are disclosed. Retention Latch circuits in MCML architecture are used to retain critical register contents during power off mode, wherein combination logic including clock buffers on the clock tree paths are powered off to reduce dynamic/static power consumption. The MCML retention flip-flop comprises a master latch and a slave latch, wherein a power switch is added to the master latch to power the master latch off during power off mode. The slave latch includes pull-down circuits that remain active to enable the slave latch to retain data at a proper voltage level during power off mode. Other devices and methods are also disclosed.
Abstract:
A data verifying method, a chip, and a verifying apparatus are provided. In the method, an encoder is provided for at least one processing circuit of a chip. One or more transmitting data of a to-be-test circuit of the processing circuit is encoded through the encoder to generate one or more parity data. The transmitting data is a computing result generated by the to-be-test circuit. The parity data is transmitted without the transmitting data. The parity data is used for data verification of the transmitting data.
Abstract:
A transformer includes first and second semiconductor substrates. The first semiconductor substrate includes a first circuit, a first coil providing a first impedance, and a first capacitor coupled in parallel with the first coil. The second semiconductor substrate includes a second circuit, a second coil providing a second impedance and inductively coupled with the first coil, and a second capacitor coupled in parallel with the second coil.