Stacked ferroelectric structure
    4.
    发明授权

    公开(公告)号:US11508755B2

    公开(公告)日:2022-11-22

    申请号:US17184856

    申请日:2021-02-25

    Abstract: The present disclosure relates to an integrated circuit (IC) in which a memory structure comprises a ferroelectric structure without critical-thickness limitations. The memory structure comprises a first electrode and the ferroelectric structure. The ferroelectric structure is vertically stacked with the first electrode and comprises a first ferroelectric layer, a second ferroelectric layer, and a first restoration layer. The second ferroelectric layer overlies the first ferroelectric layer, and the first restoration layer is between and borders the first and second ferroelectric layers. The first restoration layer is a different material type than that of the first and second ferroelectric layers and is configured to decouple crystalline lattices of the first and second ferroelectric layers so the first and second ferroelectric layers do not reach critical thicknesses. A critical thickness corresponds to a thickness at and above which the orthorhombic phase becomes thermodynamically unstable, such that remanent polarization is lost.

    STACKED FERROELECTRIC STRUCTURE
    7.
    发明申请

    公开(公告)号:US20220271046A1

    公开(公告)日:2022-08-25

    申请号:US17184856

    申请日:2021-02-25

    Abstract: The present disclosure relates to an integrated circuit (IC) in which a memory structure comprises a ferroelectric structure without critical-thickness limitations. The memory structure comprises a first electrode and the ferroelectric structure. The ferroelectric structure is vertically stacked with the first electrode and comprises a first ferroelectric layer, a second ferroelectric layer, and a first restoration layer. The second ferroelectric layer overlies the first ferroelectric layer, and the first restoration layer is between and borders the first and second ferroelectric layers. The first restoration layer is a different material type than that of the first and second ferroelectric layers and is configured to decouple crystalline lattices of the first and second ferroelectric layers so the first and second ferroelectric layers do not reach critical thicknesses. A critical thickness corresponds to a thickness at and above which the orthorhombic phase becomes thermodynamically unstable, such that remanent polarization is lost.

Patent Agency Ranking