Abstract:
The present disclosure relates to an extreme ultraviolet (EUV) radiation source that generates charged tin droplets having a trajectory controlled by an electromagnetic field, and an associated method. In some embodiments, the EUV radiation source has a laser that generates a laser beam. A charged fuel droplet generator provides a plurality of charged fuel droplets having a net electrical charge to an EUV source vessel. An electromagnetic field generator generates an electric field and/or a magnetic field. The net electrical charge of the charged fuel droplets causes the electric or magnetic field to generate a force on the charged fuel droplets that controls a trajectory of the charged fuel droplets to intersect the laser beam. By using the electric or magnetic field to control a trajectory of the charged fuel droplets, the EUV system is able to avoid focus issues between the laser beam and the charged fuel droplets.
Abstract:
The prevent disclosure provides a method for forming a reflective mask. In some embodiments, the method includes forming a carbon-containing layer over a substrate; forming a reflective multilayer over the carbon-containing layer; forming an absorption pattern over the reflective multilayer. In some embodiments, the method includes growing a light absorbing layer over a substrate; polishing the light absorbing layer; forming a reflective layer over the polished light absorbing layer; forming an absorption pattern over the reflective layer.
Abstract:
A method and apparatus for ultraviolet (UV) and extreme ultraviolet (EUV) lithography patterning is provided. A UV or EUV light beam is generated and directed to the surface of a substrate disposed on a stage and coated with photoresist. A laminar flow of a layer of inert gas is directed across and in close proximity to the substrate surface coated with photoresist during the exposure, i.e. lithography operation. The inert gas is exhausted quickly and includes a short resonance time at the exposure location. The inert gas flow prevents flue gasses and other contaminants produced by outgassing of the photoresist, to precipitate on and contaminate other features of the lithography apparatus.
Abstract:
A reflective mask includes a substrate, a light absorbing layer over the substrate, a reflective layer over the light absorbing layer, and an absorption pattern over the reflective layer. The reflective layer covers a first portion of the light absorbing layer, and a second portion of the light absorbing layer is free from coverage by the reflective layer.
Abstract:
A method for generating high-brightness light sources is provided. The method includes introducing a gaseous material into the target material. The method further includes supplying the target material into a fuel target generator. The method also includes generating targets by forcing the target material with the gaseous material out of the fuel target generator. In addition, the method includes expanding the gaseous material in the targets to transform the targets to target mists. The method also includes focusing a main pulse laser on the target mists to generate plasma emitting high-brightness light.
Abstract:
Hydroxyl moieties are formed on a surface over a semiconductor substrate. The surfaces are silylized to replace the hydroxyl groups with silyl ether groups, the silyl ether groups being of the form: —OSiR1R2R3, where R1, R2, and R3 are each hydrocarbyl groups comprising at least one carbon atom. Silylation protects the wafers from forming defects through hydrolysis while the wafers are being transported or stored under ambient conditions.
Abstract:
The present disclosure relates to an extreme ultraviolet (EUV) radiation source that generates charged tin droplets having a trajectory controlled by an electromagnetic field, and an associated method. In some embodiments, the EUV radiation source has a laser that generates a laser beam. A charged fuel droplet generator provides a plurality of charged fuel droplets having a net electrical charge to an EUV source vessel. An electromagnetic field generator generates an electric field and/or a magnetic field. The net electrical charge of the charged fuel droplets causes the electric or magnetic field to generate a force on the charged fuel droplets that controls a trajectory of the charged fuel droplets to intersect the laser beam. By using the electric or magnetic field to control a trajectory of the charged fuel droplets, the EUV system is able to avoid focus issues between the laser beam and the charged fuel droplets.
Abstract:
The prevent disclosure provides a reflective mask. In some embodiments, the reflective mask includes a substrate, a sp2-hybrid carbon layer, a reflective multilayer, and an absorption pattern. The sp2-hybrid carbon layer is over the substrate. The reflective multilayer is over the sp2-hybrid carbon layer. The absorption pattern is over the reflective multilayer.