Abstract:
An extreme ultraviolet lithography method is disclosed. In an example, the EUVL method includes forming a resist layer on a substrate; performing a first exposure process to image a first pattern of a first sub-region of a first mask to the resist layer; performing a second exposure process to image a second pattern of a second sub-region of the first mask to the resist layer; and performing a third exposure process to image a third pattern of a first sub-region of a second mask to the resist layer. The second and third patterns are identical to the first pattern. The first, second and third exposure processes collectively form a latent image of the first pattern on the resist layer.
Abstract:
A method for fabricating a pellicle includes forming a first dielectric layer over a back surface of a substrate. After forming the first dielectric layer, and in some embodiments, a graphene layer is formed over a front surface of the substrate. In some examples, after forming the graphene layer, the first dielectric layer is patterned to form an opening in the first dielectric layer that exposes a portion of the back surface of the substrate. Thereafter, while using the patterned first dielectric layer as a mask, an etching process may be performed to the back surface of the substrate to form a pellicle having a pellicle membrane that includes the graphene layer.
Abstract:
A structure including an EUV mask and a pellicle attached to the EUV mask. The pellicle includes a pellicle frame and a plurality of pellicle membrane layers attached to the pellicle frame. The plurality of pellicle membrane layers include at least one core pellicle membrane layer and an additional pellicle membrane layer is disposed on the at least one core pellicle membrane layer. In some embodiments, the additional pellicle membrane layer is a material having a thermal emissivity greater than 0.2, a transmittance greater than 80%, and a refractive index (n) for 13.5 nanometer source of greater than 0.9.
Abstract:
The present disclosure relates to a method of forming an extreme ultraviolet (EUV) pellicle having an pellicle film connected to a pellicle frame without a supportive mesh, and an associated apparatus. In some embodiments, the method is performed by forming a cleaving plane within a substrate. A pellicle frame is attached to an upper surface of the substrate, and the substrate is cleaved along the cleaving plane to form a pellicle film attached to the pellicle frame. The method forms the pellicle without using a support structure, which may block EUV radiation and cause substantial non-uniformities in the intensity of EUV radiation incident on an EUV reticle.
Abstract:
A single-shot metrology for direct inspection of an entirety of the interior of an EUV vessel is provided. An EUV vessel including an inspection tool integrated with the EUV vessel is provided. During an inspection process, the inspection tool is moved into a primary focus region of the EUV vessel. While the inspection tool is disposed at the primary focus region and while providing a substantially uniform and constant light level to an interior of the EUV vessel by way of an illuminator, a panoramic image of an interior of the EUV vessel is captured by way of a single-shot of the inspection tool. Thereafter, a level of tin contamination on a plurality of components of the EUV vessel is quantified based on the panoramic image of the interior of the EUV vessel. The quantified level of contamination is compared to a KPI, and an OCAP may be implemented.
Abstract:
A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
Abstract:
A lithography system includes a radiation source configured to generate an extreme ultraviolet (EUV) light. The lithography system includes a mask that defines one or more features of an integrated circuit (IC). The lithography system includes an illuminator configured to direct the EUV light onto the mask. The mask diffracts the EUV light into a 0-th order ray and a plurality of higher order rays. The lithography system includes a wafer stage configured to secure a wafer that is to be patterned according to the one or more features defined by the mask. The lithography system includes a pupil phase modulator positioned in a pupil plane that is located between the mask and the wafer stage. The pupil phase modulator is configured to change a phase of the 0-th order ray.
Abstract:
A lithography mask includes a substrate that contains a low thermal expansion material (LTEM). A reflective structure is disposed over a first side of the substrate. An absorber layer is disposed over the reflective structure. The absorber layer contains one or more first overlay marks. A conductive layer is disposed over a second side of the substrate, the second side being opposite the first side. The conductive layer contains portions of one or more second overlay marks. In some embodiments, the lithography mask includes an EUV lithography mask.
Abstract:
A Cu-containing material is provided as an absorber layer of an EUV mask. With the absorber layer of the Cu-containing material, the same lithography performance of a conventional absorber in 70 nm thickness of TaBN can be achieved by only a 30-nm thickness of the absorber layer according to the various embodiments of the present disclosure. Furthermore, the out-off-band (OOB) flare of the radiation light in 193-257 nm can be reduced so as to achieve the better lithography performance.
Abstract:
A Cu-containing material is provided as an absorber layer of an EUV mask. With the absorber layer of the Cu-containing material, the same lithography performance of a conventional absorber in 70 nm thickness of TaBN can be achieved by only a 30-nm thickness of the absorber layer according to the various embodiments of the present disclosure. Furthermore, the out-off-band (OOB) flare of the radiation light in 193-257 nm can be reduced so as to achieve the better lithography performance.