Abstract:
A surface treatment and an apparatus for semiconductor packaging are provided. A surface of a conductive layer is treated to create a roughened surface. In one example, nanowires are formed on a surface of the conductive layer. In the case of a copper conductive layer, the nanowires may include a CuO layer. In another example, a complex compound is formed on a surface of the conductive layer. The complex compound may be formed using, for example, thiol and trimethyl phosphite.
Abstract:
A method and apparatus for ultraviolet (UV) and extreme ultraviolet (EUV) lithography patterning is provided. A UV or EUV light beam is generated and directed to the surface of a substrate disposed on a stage and coated with photoresist. A laminar flow of a layer of inert gas is directed across and in close proximity to the substrate surface coated with photoresist during the exposure, i.e. lithography operation. The inert gas is exhausted quickly and includes a short resonance time at the exposure location. The inert gas flow prevents flue gasses and other contaminants produced by outgassing of the photoresist, to precipitate on and contaminate other features of the lithography apparatus.
Abstract:
A surface treatment and an apparatus for semiconductor packaging are provided. A surface of a conductive layer is treated to create a roughened surface. In one example, nanowires are formed on a surface of the conductive layer. In the case of a copper conductive layer, the nanowires may include a CuO layer. In another example, a complex compound is formed on a surface of the conductive layer. The complex compound may be formed using, for example, thiol and trimethyl phosphite.