Abstract:
A method comprises: receiving a circuit design comprising networks of first devices fabricated by a first fabrication process; selecting second devices to be fabricated by a second process; substituting the second devices for the first devices in the networks of the circuit design; sorting the second devices within a selected one of the networks by device area from largest device area to smallest device area; and assigning each second device in the selected network to be fabricated in a respective one of a plurality of tiers of a 3D IC for which a total area of second devices previously assigned to that tier is smallest, the second devices being assigned sequentially according to the sorting.
Abstract:
The present disclosure describes structure with a substrate, a first well region, a second well region, and a third well region. The first well region is in the substrate. The second well region is in the first well region and includes a first source/drain (S/D) region. The third well region is in the substrate and adjacent to the first well region. The third well region includes a second S/D region, where a spacing between the first and second S/D regions is less than about 3 μm.
Abstract:
A method comprises: receiving a circuit design comprising networks of first devices fabricated by a first fabrication process; selecting second devices to be fabricated by a second process; substituting the second devices for the first devices in the networks of the circuit design; sorting the second devices within a selected one of the networks by device area from a largest device area to a smallest device area; and assigning each second device in the selected network to be fabricated in a respective tier of a plurality of tiers of a three dimensional integrated circuit (3D IC) for which a total area of second devices previously assigned to said respective tier is the smallest, the second devices being assigned sequentially according to the sorting.
Abstract:
The present disclosure describes structure with a substrate, a first well region, a second well region, and a third well region. The first well region is in the substrate. The second well region is in the first well region and includes a first source/drain (S/D) region. The third well region is in the substrate and adjacent to the first well region. The third well region includes a second S/D region, where a spacing between the first and second S/D regions is less than about 3 μm.
Abstract:
A non-transitory, computer readable storage medium is encoded with computer program instructions, such that, when the computer program instructions are executed by a computer, the computer performs a method. The method generates mask assignment information for forming a plurality of patterns on a layer of an integrated circuit (IC) by multipatterning. The mask assignment information includes, for each of the plurality of patterns, a mask assignment identifying which of a plurality of masks is to be used to form that pattern, and a mask assignment lock state for that pattern. User inputs setting the mask assignment of at least one of the plurality of patterns, and its mask assignment lock state are received. A new mask assignment is generated for each of the plurality of patterns having an “unlocked” mask assignment lock state.