Abstract:
An apparatus and a method for preventing etchant condensation on a wafer surface positioned in a wafer cool-down chamber after plasma etching. The apparatus of the process chamber includes a chamber enclosure of elongated shape with an aperture in a top plate, a heating means mounted on the top plate for heating a wafer through the aperture positioned in the cavity; and an exhaust means in fluid communication with an exhaust opening provided at a back end of the chamber enclosure for evacuating gaseous content in the cavity during and after the heating of the wafer, and for cooling the wafer after the radiant heater is turned off.
Abstract:
A method of cleaning particulates from a solution bath including at least partially filling a deionized water (DIW) bath for rinsing at least one wafer following chemically cleaning the at least one wafer; rinsing the at least one wafer; transferring the at least one wafer to a downstream process; at least partially draining the DIW from the DIW bath; at least partially filling the DIW bath with a bath cleaning solution; and, applying at least one source of ultrasonic energy to agitate the bath cleaning solution.
Abstract:
A method of forming a bump on a substrate such as a semiconductor wafer or flip chip. The method includes the step of providing a semiconductor device having a contact pad and an upper passivation layer and an opening formed in the upper passivation layer exposing a portion of the contact pad. An under bump metallurgy is deposited over the upper passivation layer and the contact pad. A first photoresist layer is deposited in a liquid state so that the first photoresist layer covers the under bump metallurgy. A second photoresist layer is deposited and the second photoresist layer is a dry film photoresist. The unexposed portions of the first photoresist layer are removed. The remaining portions of the first photoresist layers are removed. The electrically conductive material is reflown to provide a bump on the semiconductor device.
Abstract:
Within a method for forming a color filter image array optoelectronic microelectronic fabrication, and the color filter image array optoelectronic microelectronic fabrication formed employing the method, there is provided a substrate having formed therein a series of photo active regions. There is also formed over the substrate at least one color filter layer having formed therein a color filter region having a concave upper surface. There is also formed upon the at least one color filter layer and planarizing the at least one color filter region having the concave upper surface, a planarizing layer. The planarizing layer provides for enhanced resolution of the color filter image array optoelectronic microelectronic fabrication.
Abstract:
A method and an apparatus for preventing contamination in a plasma process chamber when the primary heating means for the chamber is turned off is provided. In the method, a heated gas is flown over the top chamber lid of the plasma process chamber. A suitable heated gas can be nitrogen gas that is heated to a temperature between about 100null C and about 150null C. The present invention is further directed to an apparatus of a plasma process chamber that is equipped with a primary heating means and an auxiliary heating means. The auxiliary heating means is turned on as soon as the primary heating means is turned off such that a heated gas is flown onto the top chamber lid, thus preventing contaminating particles from falling off the chamber wall and preventing contamination of a wafer situated inside the chamber.
Abstract:
Within both a method for fabricating an optoelectronic microelectronic fabrication and the optoelectronic microelectronic fabrication fabricated in accord with the method for fabricating the optoelectronic microelectronic fabrication there is first provided a substrate having formed therein a minimum of one photoactive region which is sensitive to infrared radiation. There is also formed over the substrate and in registration with the minimum of one optically active region a minimum of one microlens layer. Similarly, there is also formed interposed between the substrate and the minimum of one microlens layer an infrared filter layer, wherein the infrared filter is not formed contacting the substrate. The method provides that the optoelectronic microelectronic fabrication is fabricated with enhanced optical sensitivity.