摘要:
The present invention is to present a biological sample analyzer, comprising: a characteristic information obtainer for obtaining characteristic information representing a characteristic of a component contained in a biological sample of a patient; a processor; and a memory storing software instructions adapted to enable the processor to perform operations comprising: (a) analyzing the characteristic information based on a first condition for analyzing a biological sample of a patient who does not have a predetermined attribution; and (b) analyzing the characteristic information based on a second condition for analyzing a biological sample of a patient who has the predetermined attribution.
摘要:
The present invention is to present a sample analyzer, comprising: a sample preparing section for preparing a measurement sample from a sample and a reagent; a detector for detecting a predetermined component contained in one measurement sample prepared by the sample preparing section; and a data processing section being configured to perform operations comprising: (a) generating a plurality of analysis data for analyzing the predetermined component based on a detection result by the detector; (b) selecting one analysis data from the plurality of analysis data; (c) analyzing the predetermined component based on at least the one analysis data selected in the operation (b); and (d) outputting an analysis result obtained in the operation (c).
摘要:
A sample analyzer prepares a measurement sample from a blood sample or a body fluid sample which differs from the blood sample; measures the prepared measurement sample; obtains characteristic information representing characteristics of the components in the measurement sample; sets either a blood measurement mode for measuring the blood sample, or a body fluid measurement mode for measuring the body fluid sample as an operating mode; and measures the measurement sample prepared from the blood sample by executing operations in the blood measurement mode when the blood measurement mode has been set, and measuring the measurement sample prepared from the body fluid sample by executing operations in the body fluid measurement mode that differs from the operations in the blood measurement mode when the body fluid measurement mode has been set, is disclosed. A computer program product is also disclosed.
摘要:
A sample analyzer prepares a measurement sample from a blood sample or a body fluid sample which differs from the blood sample; measures the prepared measurement sample; obtains characteristic information representing characteristics of the components in the measurement sample; sets either a blood measurement mode for measuring the blood sample, or a body fluid measurement mode for measuring the body fluid sample as an operating mode; and measures the measurement sample prepared from the blood sample by executing operations in the blood measurement mode when the blood measurement mode has been set, and measuring the measurement sample prepared from the body fluid sample by executing operations in the body fluid measurement mode that differs from the operations in the blood measurement mode when the body fluid measurement mode has been set, is disclosed. A computer program product is also disclosed.
摘要:
A hematological analyzer for measuring blood, sets a body fluid measurement mode; receives a measurement start instruction; irradiates a measurement sample with light and obtains optical information from cells contained in the measurement sample; and classifies at least white blood cells and nucleated cells other than white blood cells contained in the measurement sample, and counts the white blood cells and nucleated cells other than white blood cells based on the optical information obtained from the cells in the measurement sample prepared from a body fluid sample and white blood cell measuring reagent when the body fluid measurement mode has been set and the measurement start instruction has been selected, is disclosed. A method for analyzing body fluid and a computer program product are also disclosed.
摘要:
An analysis device for particle analysis, configured in such a manner that a reagent container is set in the device by inserting the reagent container from a side surface of the device toward the inside thereof, the reagent container having, near the forward end thereof, a suction pipe entrance portion into which a suction pipe can enter. The analysis device is provided with: a reagent container holding portion which holds the reagent container inserted from the suction pipe entrance portion side; and the suction pipe which enters, from above, the suction pipe entrance portion of the reagent container held by the reagent container holding portion and which sucks a reagent within the reagent container. The reagent container holding portion includes a guide member for guiding the insertion of the reagent container, which is inserted from the suction pipe entrance portion side, into the reagent container holding portion.
摘要:
An agitating device for agitating a blood sample in a sample container is disclosed. The agitating device includes a base comprising a horizontally-supported shaft, a container holder including a first hand and a second hand, the first hand having a first hole at one end and a first hold portion at other end, the second hand having a second hole at one end and a second hold portion at other end, the first and second holes through which the shaft is inserted, the first and second hands being rotatable relative to the shaft and the first and second hold portions faced each other, and an agitation drive unit including a contact member for contacting the container holder and a drive source for reciprocating the contact member contacting the container holder between a lower position and an upper position.
摘要:
This analysis apparatus includes a plurality of a plurality of measurement units of mutually identical types generating measurement data by measuring the specimens, a transporter transporting the specimens to the respective ones of the plurality of measurement units, a display, common to the plurality of measurement units, displaying the analytical results generated by analyzing the measurement data and a transmitter transmitting the analytical results to a host computer.
摘要:
A nonvolatile semiconductor memory device has: a semiconductor substrate; a control gate and a floating gate that are formed side by side on a gate insulating film on a channel region in the semiconductor substrate; an erase gate facing an upper surface of the floating gate; a first device isolation structure having a first projecting portion; and a second device isolation structure having a second projecting portion. The first and second projecting portions have a first sloping surface and a second sloping surface, respectively. The first sloping surface and the second sloping surface face each other, and an interval between the first and second sloping surfaces becomes larger away from the semiconductor substrate. The floating gate is sandwiched between the first and second projecting portions and at least has a portion located on the semiconductor substrate side of the first and second sloping surfaces.
摘要:
A non-volatile semiconductor memory device includes a semiconductor substrate; a floating gate formed above the semiconductor substrate; an erasing gate formed above the floating gate; a control gate formed above a channel region of a surface layer of the semiconductor substrate at a position corresponding to one lateral side of the floating gate and the erasing gate; a first silicide film formed on an upper surface of the erasing gate; and a second silicide film formed on an upper surface of the control gate, in which a height of the upper surface of the control gate is flush with/or lower than a height of the upper surface of the erasing gate. With such a device structure, the distance between the upper surface of the erasing gate and the upper surface of the control gate is large, and hence the probability of occurrence of the silicide short between the first silicide film formed on the upper surface of the erasing gate and the second silicide film formed on the upper surface of the control gate may be extremely lowered. Thus, further high speed, operation, miniaturization, and the lower voltage operation of the non-volatile semiconductor memory device having an erasing gate may be achieved.