摘要:
A group III nitride semiconductor laser device includes a laser structure, an insulating layer, an electrode and dielectric multilayers. The laser structure includes a semiconductor region on a semi-polar primary surface of a hexagonal group III nitride semiconductor support base. The dielectric multilayers are on first and second end-faces for the laser cavity. The c-axis of the group III nitride tilts by an angle ALPHA from the normal axis of the primary surface in the waveguide axis direction from the first end-face to the second end-faces. A pad electrode has first to third portions provided on the first to third regions of the semiconductor regions, respectively. An ohmic electrode is in contact with the third region through an opening of the insulating layer. The first portion has a first arm, which extends to the first end-face edge. The third portion is away from the first end-face edge.
摘要:
A Group III nitride semiconductor laser device includes a laser structure including a support substrate with a semipolar primary surface of a hexagonal Group III nitride semiconductor, and a semiconductor region thereon, and an electrode, provided on the semiconductor region, extending in a direction of a waveguide axis in the laser device. The c-axis of the nitride semiconductor is inclined at an angle ALPHA relative to a normal axis to the semipolar surface toward the waveguide axis direction. The laser structure includes first and second fractured faces intersecting with the waveguide axis. A laser cavity of the laser device includes the first and second fractured faces extending from edges of first and second faces. The first fractured face includes a step provided at an end face of an InGaN layer of the semiconductor region and extending in a direction from one side face to the other of the laser device.
摘要:
A III-nitride semiconductor laser device is provided with a laser structure and an electrode. The laser structure includes a support base which includes a hexagonal III-nitride semiconductor and a semipolar primary surface, and a semiconductor region provided on the semipolar primary surface. The electrode is provided on the semiconductor region. The semiconductor region includes a first cladding layer of a first conductivity type GaN-based semiconductor, a second cladding layer of a second conductivity type GaN-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer.
摘要:
Provided is a group-III nitride semiconductor laser device with a laser cavity of high lasing yield, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface. In a laser structure, a first surface is opposite to a second surface. The first and second fractured faces extend from an edge of the first surface to an edge of the second surface. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
摘要:
A III-nitride semiconductor laser device is provided with a laser structure and an electrode. The laser structure includes a support base which includes a hexagonal III-nitride semiconductor and a semipolar primary surface, and a semiconductor region provided on the semipolar primary surface. The electrode is provided on the semiconductor region. The semiconductor region includes a first cladding layer of a first conductivity type GaN-based semiconductor, a second cladding layer of a second conductivity type GaN-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer.
摘要:
A method of fabricating a III-nitride semiconductor laser device includes: preparing a substrate product, where the substrate product has a laser structure, the laser structure includes a semiconductor region and a substrate of a hexagonal III-nitride semiconductor, the substrate has a semipolar primary surface, and the semiconductor region is formed on the semipolar primary surface; scribing a first surface of the substrate product to form a scribed mark, the scribed mark extending in a direction of an a-axis of the hexagonal III-nitride semiconductor; and after forming the scribed mark, carrying out breakup of the substrate product by press against a second region of the substrate product while supporting a first region of the substrate product but not supporting the second region thereof, to form another substrate product and a laser bar.
摘要:
Provided are a group-III nitride semiconductor laser device with a laser cavity to enable a low threshold current on a semipolar surface of a hexagonal group-III nitride, and a method for fabricating the group-III nitride semiconductor laser device on a stable basis. Notches, e.g., notch 113a and others, are formed at four respective corners of a first surface 13a located on the anode side of a group-III nitride semiconductor laser device 11. The notch 113a or the like is a part of a scribed groove provided for separation of the device 11. The scribed grooves are formed with a laser scriber and the shape of the scribed grooves is adjusted by controlling the laser scriber. For example, a ratio of the depth of the notch 113a or the like to the thickness of the group-III nitride semiconductor laser device 11 is not less than 0.05 and not more than 0.4, a tilt of a side wall surface at an end of the notch 113a is not less than 45° and not more than 85°, and a tilt of a side wall surface at an end of the notch 113b is not less than 10° and not more than 30°.
摘要:
A method for fabricating a III-nitride semiconductor laser device includes: forming a substrate product having a laser structure; scribing a first surface of the substrate product to form a scribed mark, which extends along a reference line indicative of a direction of the a-axis of the hexagonal III-nitride semiconductor, on the first surface, a scribed mark; mounting the substrate product on a breaking device to support first and second regions of the substrate product by first and second support portions, respectively, of the breaking device; and carrying out breakup of the substrate product by press in alignment with the scribed mark in a third region, without supporting the third region of the substrate product located between the first and second regions, to form another substrate product and a laser bar. First and second end faces of the laser bar form a laser cavity of the III-nitride semiconductor laser device.
摘要:
A III-nitride semiconductor laser device includes a laser structure including a support base, a semiconductor region, and an electrode. The support base includes a hexagonal III-nitride semiconductor and a semipolar primary surface. The semiconductor region includes first and second cladding layers and an active layer arranged along an axis normal to the semipolar primary surface. A c-axis of the hexagonal III-nitride semiconductor is inclined at an angle ALPHA with respect to the normal axis toward an m-axis of the hexagonal III-nitride semiconductor. The laser structure includes first and second fractured faces that intersect with an m-n plane defined by the normal axis and the m-axis of the hexagonal III-nitride semiconductor. A laser cavity of the laser device includes the first and second fractured faces. Each of the first and second fractured faces have a stripe structure on an end face of the support base.
摘要:
A method of fabricating group-III nitride semiconductor laser device includes: preparing a substrate comprising a hexagonal group-III nitride semiconductor and having a semipolar principal surface; forming a substrate product having a laser structure, an anode electrode, and a cathode electrode, where the laser structure includes a semiconductor region and the substrate, where the semiconductor region is formed on the semipolar principal surface; scribing a first surface of the substrate product in a direction of an a-axis of the hexagonal group-III nitride semiconductor to form first and second scribed grooves; and carrying out breakup of the substrate product by press against a second surface of the substrate product, to form another substrate product and a laser bar.