摘要:
A nitride-based semiconductor light-emitting element LE1 or LD1 has: a gallium nitride substrate 11 having a principal surface 11a which makes an angle α, in the range 40° to 50° or in the range more than 90° to 130°, with the reference plane Sc perpendicular to the reference axis Cx extending in the c axis direction; an n-type gallium nitride-based semiconductor layer 13; a second gallium nitride-based semiconductor layer 17; and a light-emitting layer 15 including a plurality of well layers of InGaN and a plurality of barrier layers 23 of a GaN-based semiconductor, wherein the direction of piezoelectric polarization of the plurality of well layers 21 is the direction from the n-type gallium nitride-based semiconductor layer 13 toward the second gallium nitride-based semiconductor layer 17.
摘要:
Provided is a group-III nitride semiconductor laser device with a laser cavity of high lasing yield, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface. In a laser structure, a first surface is opposite to a second surface. The first and second fractured faces extend from an edge of the first surface to an edge of the second surface. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
摘要:
Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
摘要:
A method of fabricating a III-nitride semiconductor laser device includes: preparing a substrate with a semipolar primary surface, the semipolar primary surface including a hexagonal III-nitride semiconductor; forming a substrate product having a laser structure, an anode electrode, and a cathode electrode, the laser structure including a substrate and a semiconductor region, and the semiconductor region being formed on the semipolar primary surface; after forming the substrate product, forming first and second end faces; and forming first and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device on the first and second end faces, respectively.
摘要:
A method of making a semiconductor light-emitting device involves the steps of selecting at least one tilt angle for a primary surface of a substrate to evaluate the direction of piezoelectric polarization in a light-emitting layer, the substrate comprising a group III nitride semiconductor; preparing a substrate having the primary surface, the primary surface having the selected tilt angle, and the primary surface comprising the group III nitride semiconductor; forming a quantum well structure and p- and n-type gallium nitride semiconductor layers for the light-emitting layer at the selected tilt angle to prepare a substrate product; measuring photoluminescence of the substrate product while applying a bias to the substrate product, to determine bias dependence of the photoluminescence; evaluating the direction of the piezoelectric polarization in the light-emitting layer at the selected tilt angle on the primary surface of the substrate by the determined bias dependence; determining which of the primary surface or the back surface of the substrate is to be used, based on the evaluation to select a plane orientation of a growth substrate for making the semiconductor light-emitting device; and forming a semiconductor laminate for the semiconductor light-emitting device on the primary surface of the growth substrate. The tilt angle is defined by the primary surface of the substrate and the (0001) plane of the group III nitride semiconductor. Each of the well layer and the barrier layer of the light-emitting layer extends along a reference plane tilting from a plane perpendicular to a reference axis extending along the c-axis of the group III nitride semiconductor.
摘要:
A III-nitride semiconductor laser device is provided with a laser structure and an electrode. The laser structure includes a support base which includes a hexagonal III-nitride semiconductor and a semipolar primary surface, and a semiconductor region provided on the semipolar primary surface. The electrode is provided on the semiconductor region. The semiconductor region includes a first cladding layer of a first conductivity type GaN-based semiconductor, a second cladding layer of a second conductivity type GaN-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer.
摘要:
A semiconductor device has a satisfactory ohmic contact on a p-type principal surface tilting from a c-plane. The principal surface 13a of a p-type semiconductor region 13 extends along a plane tilting from a c-axis (axis ) of hexagonal group-III nitride. A metal layer 15 is deposited on the principal surface 13a of the p-type semiconductor region 13. The metal layer 15 and the p-type semiconductor region 13 are separated by an interface 17 such that the metal layer functions as a non-alloy electrode. Since the hexagonal group-III nitride contains gallium as a group-III element, the principal surface 13a comprising the hexagonal group-III nitride is more susceptible to oxidation compared to the c-plane of the hexagonal group-III nitride. The interface 17 avoids an increase in amount of oxide after the formation of the metal layer 15 for the electrode.
摘要:
A method of fabricating a group-III nitride semiconductor laser device includes: preparing a substrate of a hexagonal group-III nitride semiconductor, where the substrate has a semipolar primary surface; forming a substrate product having a laser structure, an anode electrode and a cathode electrode, where the laser structure includes the substrate and a semiconductor region, and where the semiconductor region is formed on the semipolar primary surface; scribing a first surface of the substrate product in part in a direction of the a-axis of the hexagonal group-III nitride semiconductor; and carrying out breakup of the substrate product by press against a second surface of the substrate product, to form another substrate product and a laser bar.
摘要:
Provided is a group-III nitride semiconductor laser device with a laser cavity allowing for a low threshold current, on a semipolar surface of a support base in which the c-axis of a hexagonal group-III nitride is tilted toward the m-axis. First and second fractured faces 27, 29 to form the laser cavity intersect with an m-n plane. The group-III nitride semiconductor laser device 11 has a laser waveguide extending in a direction of an intersecting line between the m-n plane and the semipolar surface 17a. For this reason, it is feasible to make use of emission by a band transition enabling the low threshold current. In a laser structure 13, a first surface 13a is opposite to a second surface 13b. The first and second fractured faces 27, 29 extend from an edge 13c of the first surface 13a to an edge 13d of the second surface 13b. The fractured faces are not formed by dry etching and are different from conventionally-employed cleaved facets such as c-planes, m-planes, or a-planes.
摘要:
In a III-nitride semiconductor laser device, a laser structure includes a support base with a semipolar primary surface comprised of a III-nitride semiconductor, and a semiconductor region provided on the semipolar primary surface of the support base. First and second dielectric multilayer films for an optical cavity of the nitride semiconductor laser device are provided on first and second end faces of the semiconductor region, respectively. The semiconductor region includes a first cladding layer of a first conductivity type gallium nitride-based semiconductor, a second cladding layer of a second conductivity type gallium nitride-based semiconductor, and an active layer provided between the first cladding layer and the second cladding layer. The first cladding layer, the second cladding layer, and the active layer are arranged in an axis normal to the semipolar primary surface. A c+ axis vector indicating a direction of the axis of the III-nitride semiconductor of the support base is inclined at an angle in the range of not less than 45 degrees and not more than 80 degrees or in the range of not less than 100 degrees and not more than 135 degrees toward a direction of any one crystal axis of the m- and a-axes of the III-nitride semiconductor with respect to a normal vector indicating a direction of the normal axis. The first and second end faces intersect with a reference plane defined by the normal axis and the one crystal axis of the hexagonal III-nitride semiconductor. The c+ axis vector makes an acute angle with a waveguide vector indicating a direction from the second end face to the first end face. A thickness of the first dielectric multilayer film is smaller than a thickness of the second dielectric multilayer film.