摘要:
A fluorescence detector in which a sample substrate is provided with a structure unit comprising a prism or a diffraction grating. After excitation light falling on the sample substrate is totally reflected at a biomolecule-immobilized face that is located in the opposite side of the structure unit, the structure unit allows the emission of the reflected light therefrom. To ensure multiple visual field measurement, a sample substrate-driving unit is provided to scan the sample substrate.
摘要:
A fluorescence detector in which a sample substrate is provided with a structure unit comprising a prism or a diffraction grating. After excitation light falling on the sample substrate is totally reflected at a biomolecule-immobilized face that is located in the opposite side of the structure unit, the structure unit allows the emission of the reflected light therefrom. To ensure multiple visual field measurement, a sample substrate-driving unit is provided to scan the sample substrate.
摘要:
The present invention has an object to provide a method for efficiently detecting an image with a smaller number of pixels.The invention relates to fluorescence analysis which uses a substrate having a plurality of regions for being capable of immobilizing biologically-related molecules in positions of lattice points of a lattice structure, and which causes the fluorescence from a certain lattice point to be wavelength-dispersed in a direction other than the direction toward the adjacent closest lattice point. According to an embodiment, for example, the number of pixels of a two-dimensional sensor required for fluorescence analysis of the regions with the biologically-related molecules immobilized can be set to several hundred times to fifty times smaller than that in the conventional case without degrading the measurement accuracy. This can achieve the improvement of throughput, reduction in price, and/or improvement of the operability of an analyzing device.
摘要:
The present invention has an object to provide a method for efficiently detecting an image with a smaller number of pixels.The invention relates to fluorescence analysis which uses a substrate having a plurality of regions for being capable of immobilizing biologically-related molecules in positions of lattice points of a lattice structure, and which causes the fluorescence from a certain lattice point to be wavelength-dispersed in a direction other than the direction toward the adjacent closest lattice point. According to an embodiment, for example, the number of pixels of a two-dimensional sensor required for fluorescence analysis of the regions with the biologically-related molecules immobilized can be set to several hundred times to fifty times smaller than that in the conventional case without degrading the measurement accuracy. This can achieve the improvement of throughput, reduction in price, and/or improvement of the operability of an analyzing device.
摘要:
In order to provide a fluorescence detection apparatus having a high sensitivity, a high processing capacity and a competitive edge in cost, the fluorescence detection apparatus according to this invention irradiate the sample with light so that the aspect ratio of the form of the irradiated region by light on the arrangement surface of the sample may be 1±0.1. The preferable form of irradiate region is not limited to one and varies to some extent depending on the item to be optimized. The form of irradiated region may be, for example, a circle, an equilateral triangle, a square, a regular hexagon and the like.
摘要:
In order to provide a fluorescence detection apparatus having a high sensitivity, a high processing capacity and a competitive edge in cost, the fluorescence detection apparatus according to this invention irradiate the sample with light so that the aspect ratio of the form of the irradiated region by light on the arrangement surface of the sample may be 1±0.1. The preferable form of irradiate region is not limited to one and varies to some extent depending on the item to be optimized. The form of irradiated region may be, for example, a circle, an equilateral triangle, a square, a regular hexagon and the like.
摘要:
The present invention relates to a nucleic acid analysis device in a nucleic acid analysis apparatus, whereby waste of reaction spots on the nucleic acid analysis device is eliminated and leakage of fluorescence excitation light to unobserved nucleic acid measurement regions is minimized. Specifically, the nucleic acid analysis device has a plurality of nucleic acid measurement regions, which are characterized in that one nucleic acid measurement region is disposed at a sufficient distance from the other nucleic acid measurement regions such that the other nucleic acid measurement regions do not enter an irradiation region.
摘要:
A metallic structure is provided on a surface of a substrate. A component having a longer wavelength than excitation light is detected from luminescence from fixation positions of biomolecules and emitted from a material other than the biomolecules, and is used for photometrical analysis. As the structure, usable is a particulate (a metallic structure of a size not larger than a wavelength of the excitation light), a minute protrusion, or a thin film with minute apertures, which are made of a metal such as gold, chrome, silver or aluminum. In the case of the particulate or the minute protrusion, photoluminescence of the structure is detected with a biomolecule being fixed thereon. In the case of the thin film with minute apertures, Raman scattered light of specimen solution around the biomolecules, and photoluminescence of the metallic structure near the biomolecules are detected with biomolecules being fixed in the apertures.
摘要:
A metallic structure is provided on a surface of a substrate. A component having a longer wavelength than excitation light is detected from luminescence from fixation positions of biomolecules and emitted from a material other than the biomolecules, and is used for photometrical analysis. As the structure, usable is a particulate (a metallic structure of a size not larger than a wavelength of the excitation light), a minute protrusion, or a thin film with minute apertures, which are made of a metal such as gold, chrome, silver or aluminum. In the case of the particulate or the minute protrusion, photoluminescence of the structure is detected with a biomolecule being fixed thereon. In the case of the thin film with minute apertures, Raman scattered light of specimen solution around the biomolecules, and photoluminescence of the metallic structure near the biomolecules are detected with biomolecules being fixed in the apertures.
摘要:
The invention provides a method in which an annular or spiral droplet holder formed of wire is used to hold a droplet in a state of being hung therefrom or being contained therein. A means for moving the droplet holder is added to the droplet holder to enable droplet transfer. To merge two droplets, they are brought into contact. To drip the droplet held by a droplet holder formed of wire, the droplet holder is deformed using an external force. A light path which passes through a droplet is set to enable optical measurement. The present invention enables inexpensive, simple droplet transfer. An inexpensive, simple configuration for handling droplets in the fields of chemical analysis, biochemical analysis, and automatic blood analysis can be realized according to the present invention.