摘要:
A metal oxide nanoporous material comprises two or more kinds of first metal oxides selected from the group consisting of alumina, zirconia, titania, iron oxide, rare-earth oxides, alkali metal oxides and alkaline-earth metal oxides. The metal oxide nanoporous material has nanopores, each with a diameter of 10 nm or smaller, in which the metal oxides are dispersed homogeneously in the wall forming the nanopores.
摘要:
A nanoporous metal oxide material comprising two or more metal oxides, wherein the nanoporous metal oxide material has ceria content of 10 to 60 weight %, zirconia content of 20 to 90 weight %, and alumina content of 70 weight % or less, and has nanopores whose diameters are 10 nm or less, and the metal oxides are homogeneously dispersed in a wall constituting the nanopores.
摘要:
A metal oxide nanoporous material comprises two or more kinds of first metal oxides selected from the group consisting of alumina, zirconia, titania, iron oxide, rare-earth oxides, alkali metal oxides and alkaline-earth metal oxides. The metal oxide nanoporous material has nanopores, each with a diameter of 10 nm or smaller, in which the metal oxides are dispersed homogeneously in the wall forming the nanopores.
摘要:
A nanoporous metal oxide material comprising two or more metal oxides, wherein the nanoporous metal oxide material has ceria content of 10 to 60 weight %, zirconia content of 20 to 90 weight %, and alumina content of 70 weight % or less, and has nanopores whose diameters are 10 nm or less, and the metal oxides are homogeneously dispersed in a wall constituting the nanopores.
摘要:
A method of producing a catalyst support comprising a substrate, and coating formed on the surface of the substrate and including powder of a first metal oxide of at least one member selected from the group consisting of alumina, zirconia, titania, iron oxides, oxides of rare earth elements, alkali metal oxides and alkali earth metal oxides, wherein the coating is obtained by heat treating the substrate after applied with a coating composition obtained by mixing the first metal oxide powder together with a fluid raw material composition containing raw material of a second metal oxide of at least one member selected from the group consisting of alumina, zirconia, titania, iron oxides, oxides of rare earth elements, alkali metal oxides and alkali earth metal oxides, at a shear rate of 1000 sec−1 or higher.
摘要:
A method of producing a catalyst support comprising a substrate, and coating formed on the surface of the substrate and including powder of a first metal oxide of at least one member selected from the group consisting of alumina, zirconia, titania, iron oxides, oxides of rare earth elements, alkali metal oxides and alkali earth metal oxides, wherein the coating is obtained by heat treating the substrate after applied with a coating composition obtained by mixing the first metal oxide powder together with a fluid raw material composition containing raw material of a second metal oxide of at least one member selected from the group consisting of alumina, zirconia, titania, iron oxides, oxides of rare earth elements, alkali metal oxides and alkali earth metal oxides, at a shear rate of 1000 sec−1 or higher.
摘要:
Disclosed is a chemical thermal energy storage material structure, including a granular chemical thermal energy storage material, a clay mineral having a layered ribbon structure, and a complex metal silicate that is generated by a reaction between the above-mentioned chemical thermal energy storage material and the above-mentioned clay mineral and that includes at least one type of alkaline earth metal.
摘要:
A heat exchanger heat-utilization device is obtained that can efficiently store heat and dissipate heat in or from a chemical thermal storage medium, and a manufacturing method of the heat exchanger heat-utilization device. A heat exchanger heat-utilization device includes: chemical thermal storage medium composite molded formed by organizing chemical thermal storage medium particles into a porous structural body having flow channels; and a heat exchanger body. The heat exchanger body has thermal storage medium containing portions in which the chemical thermal storage medium composite molded bodies are accommodated, and fluid flow channels that are partitioned from the thermal storage medium containing portions by partition walls and through which a heat exchange medium flows for heat exchange with the chemical thermal storage medium composite molded bodies.
摘要:
A heat exchanger heat-utilization device is obtained that can efficiently store heat and dissipate heat in or from a chemical thermal storage medium, and a manufacturing method of the heat exchanger heat-utilization device. A heat exchanger heat-utilization device includes: chemical thermal storage medium composite molded formed by organizing chemical thermal storage medium particles into a porous structural body having flow channels; and a heat exchanger body. The heat exchanger body has thermal storage medium containing portions in which the chemical thermal storage medium composite molded bodies are accommodated, and fluid flow channels that are partitioned from the thermal storage medium containing portions by partition walls and through which a heat exchange medium flows for heat exchange with the chemical thermal storage medium composite molded bodies.
摘要:
A chemical heat accumulator includes a receptacle, a first reaction vessel, and a second reaction vessel. The first reaction vessel is hermetically connected to the receptacle and supplied with water from the receptacle. The first reaction vessel contains a chemical compound that causes a hydration reaction with the water from the receptacle to generate water vapor by a heat of reaction, and causes a dehydration reaction by receiving heat. The second reaction vessel is hermetically connected to the first reaction vessel and supplied with the water vapor from the first reaction vessel. The second reaction vessel contains a chemical heat storage material that generates heat by causing a hydration reaction with the water vapor from the first reaction vessel and stores heat through a dehydration reaction caused by receiving heat. The chemical heat storage material is thermally in contact with an object to be heated.