Abstract:
An image coding method for improving coding efficiency by using more appropriate probability information is provided. The image coding method includes: a first coding step of coding a first set of blocks included in a first region sequentially based on first probability information; and a second coding step of coding a second set of blocks included in a second region sequentially based on second probability information. In the first coding step, the first probability information is updated depending on data of a target block to be coded, after coding the target block and before coding a next target block. In the second coding step, the second probability information is updated depending on the first probability information updated in the first coding step, before coding the first target block.
Abstract:
An image coding method for improving coding efficiency by using more appropriate probability information is provided. The image coding method includes: a first coding step (S811) of coding a first set of blocks included in a first region sequentially based on first probability information; and a second coding step (S812) of coding a second set of blocks included in a second region sequentially based on second probability information. In the first coding step (S811), the first probability information is updated depending on data of a target block to be coded, after coding the target block and before coding a next target block. In the second coding step (S812), the second probability information is updated depending on the first probability information updated in the first coding step (S811), before coding the first target block.
Abstract:
The present invention relates to a method for encoding and decoding an image signal and to corresponding apparatuses therefor. In particular, during the encoding and/or decoding of an image signal filtering with at least two filters is performed. The sequence of the filter application and possibly the filters are selected and the filtering is applied in the selected filtering order and with the selected filters. The determination of the sequence of applying the filters may be performed either separately in the same way at the encoder and at the decoder, or, it may be determined at the encoder and signaled to the decoder.
Abstract:
An image coding method for coding an input image per block to generate a coded image signal includes: predicting for each prediction unit which is an area obtained by partitioning a target block to generate a prediction image of the target block; comparing a transform unit which is an area obtained by partitioning the target block and is a processing unit for frequency transform with the prediction unit, to detect part of a boundary of the prediction unit, the boundary being located within the transform unit; performing boundary filtering on the detected part of the boundary in the generated prediction image; calculating a difference between a filtered prediction image and the input image to generate a difference image of the target block; and performing frequency transform on the difference image for each transform unit.
Abstract:
The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type, and the second type is “no_residual_data_flag”.
Abstract:
Methods and apparatuses for performing inter-color-plane prediction with adaptability to various existing video content representations are provided. A plurality of predetermined rescaling schemes based on a color plane format is selected. A first block of original samples of a first color plane is encoded into a compressed bitstream. A block of reconstructed samples of the first color plane is reconstructed. An inter-color-plane prediction process is performed to produce samples of a second color plane. Said block of prediction samples of the second color plane is subtracted from a second block of original samples of the second color plane to produce a block of residual samples of the second color plane where the positions of the first block and the second block of original samples are aligned. Finally, the block of residual samples of the second color plane is encoded.
Abstract:
A motion compensation method includes: specifying, using a motion vector of a current block, a reference image area for use in motion compensation for each of the current block and a current sub-block spatially adjacent to the current block, to read out reference pixel data of the specified area from a frame memory; performing motion compensation using the reference pixel data read out in the readout, to generate prediction pixel data for each of the current block and the current sub-block; outputting the prediction pixel data for the current block, generated in the performing of motion compensation; and temporarily storing the prediction pixel data for the current sub-block, generated in the performing of motion compensation.
Abstract:
The image decoding method includes: determining a context for use in a current block to be processed, from among a plurality of contexts; and performing arithmetic decoding on a bit sequence corresponding to the current block, using the determined context, wherein in the determining: the context is determined under a condition that control parameters of neighboring blocks of the current block are used, when the signal type is a first type, the neighboring blocks being a left block and an upper block of the current block; and the context is determined under a condition that the control parameter of the upper block is not used, when the signal type is a second type.
Abstract:
A method of encoding video using intra prediction mode dependent quantization matrix includes: calculating an array of quantizers for each size of block unit (100); encoding the arrays of quantizers into header of compressed video stream (102); selecting one scanning order based on a selected intra prediction mode among a plurality of scanning orders (112); scanning the array of quantizers to obtain a block of quantizers based on the selected scanning order (114).
Abstract:
Provided is a video coding method and a video decoding method increasing the resolution and quality of images while suppressing an amount of data required for increasing the resolution. A video coding apparatus includes a first orthogonal transformation unit performing discrete cosine transform on an input picture signal, a low-pass filter performing low-pass filtering on the input picture signal, a downsampling unit downsampling the resolution of a low-frequency image signal, a coding unit compressing and coding a reduced image signal, a local decoding unit decoding a coded bit stream, a second orthogonal transformation unit performing discrete cosine transform on a decoded image signal, and a modification information generation unit generating, based on input image DCT coefficients and decoded image DCT coefficients, coefficient modification information used for modifying orthogonal transformation coefficients obtained by performing orthogonal transformation on a decoded video signal obtained from a coded bit stream.