Abstract:
A cell core unit and its peripheral circuit are driven by a relatively low voltage power supply. A constant voltage that does not depend on the power supply voltage is provided as a boosted voltage (VBOOST) to be supplied to a control signal for a word line of the cell core unit. A sense amplifier amplifies a higher voltage level of a bit line to the power supply voltage. Then, a circuit for generating a signal for defining the transition timing and/or the pulse width of a control signal from the peripheral circuit to the cell core unit performs signal delay using a delay circuit having a characteristic in which a delay time thereof decreases with reduction of the provided power supply voltage.
Abstract:
A semiconductor storage device is disclosed that can lower sense amplifier input potentials to about a half supply potential (VCC/2) to speed up sense amplifier operations. According to one embodiment, a semiconductor storage device (100) may include a pair of digit lines (104 and 106), a memory cell (108) that can place stored data on digit lines (104 and 106), a sense amplifier (112) that may read memory cell data on digit lines (104 and 106), and switching devices (120-a and 120-b) connected between sense amplifier inputs (112-a and 112-b) and digit lines (104 and 106). Digit lines (104 and 106) may be precharged to a high potential. Memory cell data may then be placed on the digit lines (104 and 106). Prior to the activation of the sense amplifier (112) switching devices (120-a and 120-b) may lower the digit line potentials to a level more conducive to sensing by the sense amplifier (112). In this way, a read operation by the sense amplifier (112) may be faster than conventional approaches.
Abstract:
A data latch circuit includes a differential amplifier for detecting a potential difference between a pair of signal transmission lines for transmitting a pair of complementary signals, a latch timing signal generator for generating a latch timing signal based on the detection by the differential amplifier, and a latch section for responding to the latch timing signal to latch the complementary signals transferred thereto. A reliable and high-speed signal transmission can be achieved even in a semiconductor device having a large chip size.
Abstract:
Refresh of memory cells is performed periodically by a refresh timer, and collision between memory access and memory refresh is avoided. When memory access occurs, an F/F 163 is set by a one shot pulse from an OS circuit 161, a memory access request is inputted to a memory accessing pulse generator circuit 171 through a NOR gate 167, and a latch control signal LC and an enable signal REN are outputted. When a refresh request from the refresh timer is inputted to an AND gate 168 during the memory access, the output of the NOR gate 167 is at the “L” level, and the refresh request is blocked by the AND gate 168. Thereafter, at the time when the latch control signal LC is turned into the “L” level, F/Fs 163, 164 and 165 are reset, the output of the NOR gate 167 is turned into the “H” level, the refresh request is inputted to a refreshing pulse generator circuit 170, and a refresh enable signal RERF is outputted.
Abstract translation:通过刷新定时器周期性地执行存储器单元的刷新,并避免存储器访问和存储器刷新之间的冲突。 当存储器访问发生时,通过来自OS电路161的单触发脉冲设置F / F 163,通过NOR门167将存储器访问请求输入到存储器访问脉冲发生器电路171,以及锁存控制信号LC和 输出使能信号REN。 当在存储器访问期间来自刷新定时器的刷新请求被输入到与门168时,或非门167的输出处于“L”电平,刷新请求由与门168阻止。 此后,当锁存控制信号LC变为“L”电平时,F / F 163,164和165被复位,或非门167的输出变为“H”电平,刷新请求 被输入到刷新脉冲发生器电路170,并且输出刷新使能信号RERF。
Abstract:
A semiconductor memory device adapted for avoiding collision between the selection period of a word line for a refresh and the selection period of a word line for a read/write, comprises a cell array including a plurality of memory cells that require refreshing for retention of storage data and means for exercising control so that when a read/write request is input in a clock cycle following a clock cycle for performing a refresh operation, a read/write operation in the cell array is delayed by at least one clock cycle, and the read/write operation is started after completion of the refresh.
Abstract:
In a conventional equalizer circuit, in an equalizing operation for setting voltages of a wiring pair having a predetermined voltage difference therebetween to be the same, it takes a long time to make the voltages of the wirings in a pair converge to a voltage having an offset with respect to a midpoint voltage of the voltages of the wiring pair after the equalizing operation. According to an equalizer circuit of the present invention, provided is an equalizer circuit (50) which sets the voltages of a first wiring (SAP) and a second wiring (SAN) to be substantially the same and which has a first transistor (N1) connected between the first wiring (SAP) and a first power supply circuit (for example, HVDD−Va) and a second transistor (N2) connected between the first wiring SAP and the second wiring (SAN). The equalizer circuit 50 makes the first transistor (N1) conductive, and then makes the second transistor (N2) conductive.
Abstract:
A cell core unit and its peripheral circuit are driven by a relatively low voltage power supply. A constant voltage that does not depend on the power supply voltage is provided as a boosted voltage (VBOOST) to be supplied to a control signal for a word line of the cell core unit. A sense amplifier amplifies a higher voltage level of a bit line to the power supply voltage. Then, a circuit for generating a signal for defining the transition timing and/or the pulse width of a control signal from the peripheral circuit to the cell core unit performs signal delay using a delay circuit having a characteristic in which a delay time thereof decreases with reduction of the provided power supply voltage.
Abstract:
A semiconductor storage device has first and second cell arrays including a plurality of memory cells to store data, a sense amplifier selectively connected with either one of the first and second cell arrays, a first precharge circuit to set a pair of bit lines in the first cell array to a predetermined voltage, a second precharge circuit to set a pair of bit lines in the second cell array to a predetermined voltage, a first switch circuit to connect the sense amplifier with the first cell array, a second switch circuit to connect the sense amplifier with the second cell array, and a switch controller to control conductive state of the first and second switch circuits. In non-selection state where the sense amplifier does not access any of the cell arrays, the switch controller controls one of the switch circuits into conducting state.
Abstract:
A cell core unit and its peripheral circuit are driven by a relatively low voltage power supply. A constant voltage that does not depend on the power supply voltage is provided as a boosted voltage (VBOOST) to be supplied to a control signal for a word line of the cell core unit. A sense amplifier amplifies a higher voltage level of a bit line to the power supply voltage. Then, a circuit for generating a signal for defining the transition timing and/or the pulse width of a control signal from the peripheral circuit to the cell core unit performs signal delay using a delay circuit having a characteristic in which a delay time thereof decreases with reduction of the provided power supply voltage.
Abstract:
A semiconductor storage device according to an embodiment of the present invention includes: a plurality of word lines; a plurality of memory cells corresponding to the plurality of word lines; and a refresh circuit for sequentially driving the plurality of word lines to refresh each of the plurality of memory cells based on a timer period, which sets the timer period in accordance with a disturb amount in an active mode upon shift from the active mode to the standby mode.